EE 565: Position, Navigation, and Timing Aided INS

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

April 20, 2020

Notation Used

Truth value

 \vec{x}

Measured value

 $\tilde{\vec{x}}$

• Estimated or computed value

 $\hat{\vec{x}}$

Error

$$\delta \vec{x} = \vec{x} - \hat{\vec{x}}$$

Actual Measurements

Initially the accelerometer and gyroscope measurements, $\tilde{\vec{f}}_{ib}^{\ b}$ and $\tilde{\vec{\omega}}_{ib}^{\ b}$, respectively, will be modeled as

$$\tilde{\vec{f}}_{ib}^{\ b} = \vec{f}_{ib}^{\ b} + \Delta \vec{f}_{ib}^{\ b} = \hat{\vec{f}}_{ib}^{\ b} + \Delta \hat{\vec{f}}_{ib}^{\ b}$$
 (1)

$$\tilde{\vec{\omega}}_{ib}^{\ b} = \vec{\omega}_{ib}^{\ b} + \Delta \vec{\omega}_{ib}^{\ b} = \hat{\vec{\omega}}_{ib}^{\ b} + \Delta \hat{\vec{\omega}}_{ib}^{\ b}$$
 (2)

where $\vec{f}_{ib}^{\ b}$ and $\vec{\omega}_{ib}^{\ b}$ are the specific force and angular rates, respectively; and $\Delta \vec{f}_{ib}^{\ b}$ and $\Delta \vec{\omega}_{ib}^{\ b}$ represents the errors. In later lectures we will discuss more detailed description of these errors.

Error Modeling Example

Accelerometers

$$\tilde{\vec{f}}_{ib}^{\ b} = \vec{b}_a + (\mathcal{I} + M_a)\vec{f}_{ib}^{\ b} + \vec{nl}_a + \vec{w}_a \tag{3}$$

Gyroscopes

$$\tilde{\vec{\omega}}_{ib}^{\ b} = \vec{b}_g + (\mathcal{I} + M_g)\vec{\omega}_{ib}^{\ b} + G_g \vec{f}_{ib}^{\ b} + \vec{w}_g$$
 (4)

Pos, Vel, Force and Angular Rate Errors

Position error

$$\delta \vec{r}_{\beta b}^{\gamma} = \vec{r}_{\beta b}^{\gamma} - \hat{\vec{r}}_{\beta b}^{\gamma} \tag{5}$$

Velocity error

$$\delta \vec{v}_{\beta b}^{\gamma} = \vec{v}_{\beta b}^{\gamma} - \hat{\vec{v}}_{\beta b}^{\gamma} \tag{6}$$

Specific force errors

$$\delta \vec{f}_{ib}^{\ b} = \vec{f}_{ib}^{\ b} - \hat{\vec{f}}_{ib}^{\ b} \tag{7}$$

$$\Delta_e \vec{f}_{ib}^{\ b} = \Delta \vec{f}_{ib}^{\ b} - \Delta \hat{\vec{f}}_{ib}^{\ b} = -\delta \vec{f}_{ib}^{\ b}$$

Angular rate errors

$$\delta \vec{\omega}_{ib}^{\ b} = \vec{\omega}_{ib}^{\ b} - \hat{\vec{\omega}}_{ib}^{\ b} \tag{9}$$

$$\Delta_{e}\vec{\omega}_{ib}^{b} = \Delta\vec{\omega}_{ib}^{b} - \Delta\hat{\vec{\omega}}_{ib}^{b} = -\delta\vec{\omega}_{ib}^{b} \tag{10}$$

(8)

ECEF Error Mechanization

Recall

$$\begin{pmatrix}
\delta \dot{\vec{\psi}}_{eb}^{e} \\
\delta \dot{\vec{v}}_{eb}^{e} \\
\delta \dot{\vec{r}}_{eb}^{e}
\end{pmatrix} = \begin{bmatrix}
-\Omega_{ie}^{e} & 0_{3\times3} & 0_{3\times3} \\
-[\hat{C}_{b}^{e} \dot{\vec{f}}_{ib}^{b} \times] & -2\Omega_{ie}^{e} & \frac{2g_{0}(\hat{L}_{b})}{r_{es}^{e}(\hat{L}_{b})} \frac{\hat{r}_{eb}^{e}}{|\hat{r}_{eb}^{e}|^{2}} (\hat{r}_{eb}^{e})^{T} \\
0_{3\times3} & \mathcal{I}_{3\times3} & 0_{3\times3}
\end{bmatrix} \begin{pmatrix}
\delta \dot{\vec{\psi}}_{eb}^{e} \\
\delta \vec{r}_{eb}^{e}
\end{pmatrix} + \\
\begin{bmatrix}
0 & -\hat{C}_{b}^{e} \\
-\hat{C}_{b}^{e} & 0 \\
0 & 0
\end{bmatrix} \begin{pmatrix}
\Delta_{e} \vec{f}_{ib}^{b} \\
\Delta_{e} \vec{\omega}_{ib}^{b}
\end{pmatrix} \tag{11}$$

Errors After Calibration

In reality there will be error terms in the sensor that can not be calibrated. These terms may be estimated. The error in the estimation of these terms may be expressed as

$$\Delta_{e}\vec{f}_{ib}^{b} = \Delta\vec{f}_{ib}^{b} - \Delta\hat{\vec{f}}_{ib}^{b} = F_{va}\delta\vec{x}_{a} + \vec{\varsigma}_{a}$$
 (12)

$$\Delta_{e}\vec{\omega}_{ib}^{b} = \Delta\vec{\omega}_{ib}^{b} - \Delta\hat{\vec{\omega}}_{ib}^{b} = F_{\psi g}\delta\vec{x}_{g} + \vec{\varsigma}_{g}$$
(13)

These terms represent the difference between what we estimate the errors in the sensors to be (either through calibration or online estimation) and the actual errors in the sensor.

Error Terms

The matrics F_{va} and $F_{\psi g}$, depend on the needed level of complexity in modeling the errors. For example if we only model biases, e.g., $\delta \vec{x_a} = \delta \vec{b_a}$, then $F_{va} = \mathcal{I}$. If more error terms are modeled, then most likely, we will end up with non-linear equations, and therefore linearization is necessary.

Error Modeling

$$\delta \dot{\vec{x}}_a = F_{aa} \delta \vec{x}_a + \vec{w}_a \tag{14}$$

$$\delta \vec{x}_g = F_{gg} \delta \vec{x}_g + \vec{w}_g \tag{15}$$

The matrics F_{aa} and F_{gg} are specific to accelerometers and the gyroscopes and there specific configuration within the IMU.

State Augmentation

After state augmentation

$$\begin{pmatrix}
\delta \dot{\vec{\psi}}_{eb}^{e} \\
\delta \dot{\vec{v}}_{eb}^{e} \\
\delta \dot{\vec{v}}_{eb}^{e}
\end{pmatrix} = \begin{bmatrix}
-\Omega_{ie}^{e} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & -\hat{C}_{b}^{e} F_{\psi g} \\
-[\hat{C}_{b}^{e} \hat{\vec{f}}_{b}^{b} \times] & -2\Omega_{ie}^{e} & \frac{2g_{0}(\hat{L}_{b})}{r_{es}^{e}(\hat{L}_{b})} \frac{\hat{r}_{eb}^{e}}{r_{eb}^{e}} (\hat{r}_{eb}^{e})^{T} & -\hat{C}_{b}^{e} F_{va} & 0_{3\times3} \\
0_{3\times3} & \mathcal{I}_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & F_{aa} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & F_{gg}
\end{bmatrix} \begin{pmatrix}
\delta \vec{\psi}_{eb}^{e} \\
\delta \vec{v}_{eb}^{e} \\
\delta \vec{v}_{eb}^{e}
\end{pmatrix} + \begin{pmatrix}
-\hat{C}_{b}^{e} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_$$

Overview

Need for Integration

Advantages	Disadvantages
Immune to RF Jaming	Drifts
High data rate	Errors are time dependent
High accuracy in short term	Need Initialization

Open-Loop Integration

Closed-Loop Integration

If error estimates are fedback to correct the INS mechanization, a reset of the state estimates becomes necessary.

$$\hat{\vec{x}}_{k|k-1} = \Phi_{k-1} \hat{\vec{x}}_{k-1|k-1}$$

$$\mathsf{P}_{k|k-1} = \mathsf{Q}_{k-1} + \Phi_{k-1} \mathsf{P}_{k-1|k-1} \Phi_{k-1}^T$$

(17)

$$\hat{\vec{x}}_{k|k} = \hat{\vec{x}}_{k|k-1} + K_k (\vec{z}_k - H_k \hat{\vec{x}}_{k|k-1})$$

$$P_{k|k} = (I - K_k H_k) P_{k|k-1} (I - K_k H_k)^T + K_k R_k K_k^T$$

$$K_k = P_{k|k-1} H_k^T (H_k P_{k|k-1} H_k^T + R_k)^{-1}$$

(19)

(20)

$$K_k = P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T + R_k)^{-1}$$

Closed-Loop Kalman Filter

Since the errors are being fedback to correct the INS, the state estimate must be reset after each INS correction.

$$\hat{\vec{x}}_{k|k-1} = 0 \tag{22}$$

$$\mathsf{P}_{k|k-1} = \mathsf{Q}_{k-1} + \Phi_{k-1} \mathsf{P}_{k-1|k-1} \Phi_{k-1}^{T} \tag{23}$$

$$\hat{\vec{x}}_{k|k} = \mathsf{K}_k \vec{z}_k \tag{24}$$

$$P_{k|k} = (I - K_k H_k) P_{k|k-1} (I - K_k H_k)^T + K_k R_k K_k^T$$
(25)

$$K_{k} = P_{k|k-1} H_{k}^{T} (H_{k} P_{k|k-1} H_{k}^{T} + R_{k})^{-1}$$
(26)

$$\Phi_{k-1} \approx \mathsf{I} + \mathsf{F}\Delta t \tag{27}$$

$$\Phi_{k-1} \approx I + F\Delta t$$
(27)
$$Q = \begin{pmatrix}
n_{rg}^{2}|_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & n_{ag}^{2}|_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & n_{bad}^{2}|_{3\times3} & 0_{3\times3} \\
0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & n_{bgd}^{2}|_{3\times3}
\end{pmatrix}$$
(28)

where Δt is the sample time, n_{rg}^2 , n_{ag}^2 , n_{bad}^2 , n_{bgd}^2 are the PSD of the gyro and accel random noise, and accel and guro bias variation, respectively.

Discrete Covariance Matrix Q_k

Assuming white noise, small time step, G is constant over the integration period, and the trapezoidal integration

$$Q_{k-1} \approx \frac{1}{2} \left[\Phi_{k-1} G_{k-1} Q(t_{k-1}) G_{k-1}^{T} \Phi_{k-1}^{T} + G_{k-1} Q(t_{k-1}) G_{k-1}^{T} \right] \Delta t$$
 (29)