EE 565: Position, Navigation, and Timing

Aided INS

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

April 20, 2020

- Truth value

$$
\vec{x}
$$

- Measured value
- Estimated or computed value

$$
\hat{\vec{x}}
$$

- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

Initially the accelerometer and gyroscope measurements, $\tilde{\vec{f}}_{i b}^{b}$ and $\tilde{\vec{\omega}}_{i b}^{b}$, respectively, will be modeled as

$$
\begin{gather*}
\tilde{\vec{f}}_{i b}^{b}=\vec{f}_{i b}^{b}+\Delta \vec{f}_{i b}^{b}=\hat{\vec{f}}_{i b}^{b}+\Delta \hat{\vec{f}}_{i b}^{b} \tag{1}\\
\tilde{\vec{\omega}}_{i b}^{b}=\vec{\omega}_{i b}^{b}+\Delta \vec{\omega}_{i b}^{b}=\hat{\vec{\omega}}_{i b}^{b}+\Delta \hat{\vec{\omega}}_{i b}^{b} \tag{2}
\end{gather*}
$$

where $\vec{f}_{i b}^{b}$ and $\vec{\omega}_{i b}^{b}$ are the specific force and angular rates, respectively; and $\Delta \vec{f}_{i b}^{b}$ and $\Delta \vec{\omega}_{i b}^{b}$ represents the errors. In later lectures we will discuss more detailed description of these errors.

Accelerometers

$$
\begin{equation*}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l}_{a}+\vec{w}_{a} \tag{3}
\end{equation*}
$$

Giyroscopes

$$
\begin{equation*}
\tilde{\vec{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{4}
\end{equation*}
$$

- Position error

$$
\begin{equation*}
\delta \vec{r}_{\beta b}^{\gamma}=\vec{r}_{\beta b}^{\gamma}-\hat{\vec{r}}_{\beta b}^{\gamma} \tag{5}
\end{equation*}
$$

- Velocity error

$$
\begin{equation*}
\delta \vec{v}_{\beta b}^{\gamma}=\vec{v}_{\beta b}^{\gamma}-\hat{\vec{v}}_{\beta b}^{\gamma} \tag{6}
\end{equation*}
$$

- Specific force errors

$$
\begin{gather*}
\delta \vec{f}_{i b}^{b}=\vec{f}_{i b}^{b}-\hat{\vec{f}}_{i b}^{b} \tag{7}\\
\Delta_{e} \vec{f}_{i b}^{b}=\Delta \vec{f}_{i b}^{b}-\Delta \hat{\vec{f}}_{i b}^{b}=-\delta \vec{f}_{i b}^{b} \tag{8}
\end{gather*}
$$

- Angular rate errors

$$
\begin{gather*}
\delta \vec{\omega}_{i b}^{b}=\vec{\omega}_{i b}^{b}-\hat{\vec{\omega}}_{i b}^{b} \tag{9}\\
\Delta_{e} \vec{\omega}_{i b}^{b}=\Delta \vec{\omega}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b}=-\delta \vec{\omega}_{i b}^{b} \tag{10}
\end{gather*}
$$

Recall

$$
\begin{aligned}
& \left(\begin{array}{c}
\delta \dot{\vec{\psi}} e \\
\delta \dot{\vec{v}}_{e b}^{e} \\
\delta \dot{\vec{r}}_{e b}^{e}
\end{array}\right)=\left[\begin{array}{ccc}
-\Omega_{i e}^{e} & 0_{3 \times 3} & 0_{3 \times 3} \\
-\left[\hat{C}_{b}^{e} \hat{\vec{F}}_{i b}^{b} \times\right] & -2 \Omega_{i e}^{e} & \frac{2 g_{0}\left(\hat{L}_{b}\right)}{r_{e S}^{e}\left(\hat{L}_{b}\right)} \hat{\vec{r}}_{e b}^{e}\left(\left.\hat{\vec{r}}_{e b}^{e}\right|^{2}\right. \\
\left.\hat{\vec{r}}_{e b}^{e}\right)^{T} \\
0_{3 \times 3} & \mathcal{I}_{3 \times 3} & 0_{3 \times 3}
\end{array}\right]\left(\begin{array}{c}
\delta \vec{\psi}_{e b}^{e} \\
\delta \vec{v}_{e b}^{e} \\
\delta \vec{r}_{e b}^{e}
\end{array}\right)+ \\
& {\left[\begin{array}{cc}
0 & -\hat{C}_{b}^{e} \\
-\hat{C}_{b}^{e} & 0 \\
0 & 0
\end{array}\right]\binom{\Delta_{e} \vec{f}_{i b}^{b}}{\Delta_{e} \vec{\omega}_{i b}^{b}}}
\end{aligned}
$$

In reality there will be error terms in the sensor that can not be calibrated. These terms may be estimated. The error in the estimation of these terms may be expressed as

$$
\begin{gather*}
\Delta_{e} \vec{f}_{i b}^{b}=\Delta \vec{f}_{i b}^{b}-\Delta \hat{\vec{f}}_{i b}^{b}=F_{v a} \delta \vec{x}_{a}+\vec{\varsigma}_{a} \tag{12}\\
\Delta_{e} \vec{\omega}_{i b}^{b}=\Delta \vec{\omega}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b}=F_{\psi g} \delta \vec{x}_{g}+\vec{\varsigma}_{g} \tag{13}
\end{gather*}
$$

These terms represent the difference between what we estimate the errors in the sensors to be (either through calibration or online estimation) and the actual errors in the sensor.

The matrics $F_{v a}$ and $F_{\psi g}$, depend on the needed level of complexity in modeling the errors. For example if we only model biases, e.g., $\delta \vec{x}_{a}=\delta \vec{b}_{a}$, then $F_{v a}=\mathcal{I}$. If more error terms are modeled, then most likely, we will end up with non-linear equations, and therefore linearization is necessary.

$$
\begin{align*}
& \delta \dot{\vec{x}}_{a}=F_{a a} \delta \vec{x}_{a}+\vec{w}_{a} \tag{14}\\
& \delta \dot{\vec{x}}_{g}=F_{g g} \delta \vec{x}_{g}+\vec{w}_{g} \tag{15}
\end{align*}
$$

The matrics $F_{a a}$ and $F_{g g}$ are specific to accelerometers and the gyroscopes and there specific configuration within the IMU.

State Augmentation

After state augmentation

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
-\hat{C}_{b}^{e} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & -\hat{C}_{b}^{e} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & \mathcal{I}_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & \mathcal{I}_{3 \times 3}
\end{array}\right]\left(\begin{array}{c}
\vec{\zeta}_{g} \\
\overrightarrow{\zeta_{a}} \\
0_{3 \times 1} \\
\vec{w}_{a} \\
\vec{w}_{g}
\end{array}\right)} \tag{16}\\
& =F(t) \vec{x}+G \vec{w}
\end{align*}
$$

Advantages	Disadvantages
Immune to RF Jaming	Drifts
High data rate	Errors are time dependent
Heed Initialization	

Closed-Loop Integration

If error estimates are fedback to correct the INS mechanization, a reset of the state estimates becomes necessary.

Since the errors are being fedback to correct the INS, the state estimate must be reset after each INS correction.

$$
\begin{gather*}
\hat{\vec{x}}_{k \mid k-1}=0 \tag{22}\\
\mathrm{P}_{k \mid k-1}=\mathrm{Q}_{k-1}+\boldsymbol{\Phi}_{k-1} \mathrm{P}_{k-1 \mid k-1} \boldsymbol{\Phi}_{k-1}^{T} \tag{23}\\
\hat{\vec{x}}_{k \mid k}=\mathrm{K}_{k} \vec{z}_{k} \tag{24}\\
P_{k \mid k}=\left(I-K_{k} H_{k}\right) P_{k \mid k-1}\left(I-K_{k} H_{k}\right)^{T}+K_{k} R_{k} K_{k}^{T} \tag{25}\\
\mathrm{~K}_{k}=\mathrm{P}_{k \mid k-1} \mathrm{H}_{k}^{T}\left(\mathrm{H}_{k} \mathrm{P}_{k \mid k-1} \mathrm{H}_{k}^{T}+\mathrm{R}_{k}\right)^{-1} \tag{26}
\end{gather*}
$$

$$
\begin{equation*}
\mathbf{\Phi}_{k-1} \approx \mathrm{I}+\mathrm{F} \Delta t \tag{27}
\end{equation*}
$$

$$
\mathrm{Q}=\left(\begin{array}{ccccc}
n_{r g}^{2} l_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \tag{28}\\
0_{3 \times 3} & n_{a g}^{2} l_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & n_{b a d}^{2} l_{3 \times 3} & 0_{3 \times 3} \\
0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 3} & n_{b g d}^{2} l_{3 \times 3}
\end{array}\right)
$$

where Δt is the sample time, $n_{r g}^{2}, n_{a g}^{2}, n_{b a d}^{2}, n_{b g d}^{2}$ are the PSD of the gyro and accel random noise, and accel and gyro bias variation, respectively.

Assuming white noise, small time step, G is constant over the integration period, and the trapezoidal integration

$$
\begin{equation*}
\mathrm{Q}_{k-1} \approx \frac{1}{2}\left[\boldsymbol{\Phi}_{k-1} \mathrm{G}_{k-1} \mathrm{Q}\left(t_{k-1}\right) \mathrm{G}_{k-1}^{T} \boldsymbol{\Phi}_{k-1}^{T}+\mathrm{G}_{k-1} \mathrm{Q}\left(t_{k-1}\right) \mathrm{G}_{k-1}^{T}\right] \Delta t \tag{29}
\end{equation*}
$$

