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Objective

Sequentially estimate on-line the states of a system as it changes over time using obser-
vations that are corrupted with noise.

o Filtering: the time of the estimate coincides with the last measurement.
e Smoothing: the time of the estimate is within the span of the measurements.
e Prediction: the time of the estimate occurs after the last available measurement.

Example: random constant
Estimate the value of a random constant. How many points do you need?
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Number of points in average

e The best estimate is the mean.
e Variance of the estimate decreases as 1/N.




Remarks and Questions

e For a stationary process that represents a random constant, averaging over more
points results in an improved estimate.

o What will happen if the same is applied to a non-constant?

e If we have a measurement corrupted with noise, can we use the statistical proper-
ties of the noise, and compute an estimate that maximizes the probability that this
measurement actually occurred?

e For real-time applications, can we solve the estimation problem recursively?

1 Problem

Given State-Space Equations
Zy = fi, (L1, Wr—1) (1)

Zy = hy(Ey, Uy) (2)

where @ is (n x 1) state vector at time k, f and hy are possibly non-linear function
f, : R" x R — R" and hy : R x R"™ — K™, respectively, and w; and U iid
state noise. The state process is Markov chain, i.e., p(Zg|Z1,...,&k-1) = p(Zk|Er—1) and
the distribution of Zj conditional on the state & is independent of previous state and
measurement values, i.e., p(Zx|E1.k, Z1.6—1) = P(Zk|Er)

Objective

Probabilistically estimate @) using previous measurement Zi.;. In other words, construct
the pdf p(Zk|21.x).

Optimal MMSE Estimate
B8 - @712 = [ 18~ EulPpl@n i) ey G)

in other words find the conditional mean

2 Bayesian Estimation

3 Kalman Filter

Assumptions

e Wy and ¥y are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

B(wyan!} = ;’; 5)
o Ry i=k

E{viv; } = 0 itk (6)
E{u?kﬁf}:{o Vi k (7)



Assumptions

e f; and hy are both linear, e.g., the state-space system equations may be written as
Ty = Pr—1 Tp—1 + We—1 (8)

Y = Hy & + Uy 9)

where ®;_; is (n X n) transition matrix relating 1 to &g, Hy is (m x n) matrix provides
noiseless connection between measurement and state vectors. .8

State-Space Equations

Zpjh—1 = Pr—1Th—1)k—1 (10)
T
Prr-1=Qr-1+ P 1Pr1p 1P (11)
Epp = Trpp—1 + Ki (2 — Hppr_1) (12)
Prp = (I - KpHy)Ppjp—1 (13)
where K, is (n x m) Kalman gain, and (2} — Hk:%k|k_1) is the measurement innovation. 9
Kalman Gain
K; =P H ( HyPpp_ HY + Ry )71 14
k= P11 Hy ( Hp Py Hy, + Ry ) (14)
10
Kalman filter data flow
Initial estimate (B¢ and P)
Compute Kalman gain
Ky = Ppp_ 1 Hf (Hp Py HE + Ry~ !
ék‘k71 :Dj;:jhlegkfl‘k,l . Update estimate with measurement £,
Pt = Qno b ‘I’kflpk_uk_ﬁﬁll B = Bpp—1 + Kp(Fp — Hpdp 1)
k=k+1
Update error covariance
Prik = Prle—1 — KpeHpPrp_q
11
System Model
Z(t) = F)Z(t) + G(t)w(t) (15)
To obtain the state vector estimate Z(t)
- J 2
E{Z(1)} = 5,2(t) = F(1)Z(¢) (16)
Solving the above equation over the interval ¢t — 7,
A t ’ 7\ A
Z(t) = eFr POV ) gy 7y (17)
where Fy_; is the average of F at times ¢t and t — 7. 12




System Model Discretization
As shown in the Kalman filter equations the state vector estimate is given by

Tpjh—1 = Pr1Tr_1)k—1
Therefore,
By = T+ Fyg7g (18)

where Fj_; is the average of F at times ¢t and ¢t — 75, and first order approximation is
used.

Discrete Covariance Matrix Qy
Assuming white noise, small time step, G is constant over the integration period, and
the trapezoidal integration

1
Q-1 ~ 3 [®1-1Gr-1Q(tr-1)GE_1®%_1 + Gr_1Q(te—1)G{_y] 7o (19)

where

E{w(n)w" (()} = Q(n)d(n - ¢) (20)

4 Example
Example: random constant
i(t) =0, Yk = T + Uk
Design a Kalman filter to estimate zy,

e What is the discretized system?
e What is ¢, Q, H, R and P?
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Example: first order Markov noise
State Equation
1

b(t) = = b(t) + w(t) (21)
Autocorrelation Function
E{b(t)b(t +7)} = o e 1T/ Te (22)
where
E{wt)w(t+71)} = Q(t)d(t — 7) (23)
202
t)="BL 24
Q) = = 24)
and T, is the correlation time.
Discrete First Order Markov Noise
State Equation
1
b = e Tc*bp_1 + wi_1 (25)
System Covariance Matrix
Q=01 —e 7] (26)

Autocorrelation of 1st order Markov

Small Correlation Time T, = 0.01
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Larger Correlation Time T, = 0.1
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5 EKF
Linearized System
of (@ oh(z
po- 20 w2 RO 27)
€T T=Fp, 1 i T=Tp|p_1
where
ofr O . Ohy  Oh1 |
. oxq Oxo R oz Ox2
(&) _ | op, of .. () | on, ony .. (28)
o | 9m 0w ’ oz | o om

Sequential Processing

If R is a block matrix, i.e, R = diag(R', R?,...,R"). The R has dimensions p’ x p'.
Then, we can sequentially process the measurements as:

Fori=1,2,...,r

Ki _ szl(Hl)T(Hzplfl(Hz)T + Ri)fl (29)
By = Ty + K (2, - H'E ) (30)
P'=(I-KH)P! (31)

o 20 0 _ Ppo i e i . ; _
where Zy ) = Trjk—1, P® = Pk|k—1 and H* is p* x n corresponding to the rows of H
corresponding the measurement being processed.
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Observability
The system is observable if the observability matrix

Hk—-n+1)
H(k—n—2)®(k—n+1)
O(k) = | (32

H)®(k—1)... 3k —n+1)

where n is the number of states, has a rank of n. The rank of O is a binary indicator and
does not provide a measure of how close the system is to being unobservable, hence, is
prone to numerical ill-conditioning.

A Better Observability Measure
In addition to the computation of the rank of O(k), compute the Singular Value Decom-
position (SVD) of O(k) as
o=Uxv* (33)

and observe the diagonal values of the matrix ¥. Using this approach it is possible to
monitor the variations in the system observability due to changes in system dynamics.

Remarks

e Kalman filter is optimal under the aforementioned assumptions,

e and it is also an unbiased and minimum variance estimate.

o If the Gaussian assumptions is not true, Kalman filter is biased and not minimum
variance.

e Observability is dynamics dependent.

e The error covariance update may be implemented using the Joseph form which provides
a more stable solution due to the guaranteed symmetry.

Py = (I - KyHy) Py (I — K Hy)" + KR K] (34)

6 Other Solutions

Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented transformation) through the
true non-linear system, and therefore captures the posterior mean and covariance accurately
to the second order.

Particle Filter

A Monte Carlo based method. It allows for a complete representation of the state
distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian
assumptions.

7 References

Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, by Zhe Chen
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