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Objective

Sequentially estimate on-line the states of a system as it changes over time using
observations that are corrupted with noise.

Filtering: the time of the estimate coincides with the last measurement.
Smoothing: the time of the estimate is within the span of the measurements.
Prediction: the time of the estimate occurs after the last available measurement.
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Example: random constant

Estimate the value of a random constant. How many points do you need?

−2

−1

0

1

2

3

4

0 100 200 300 400 500

va
lu

e

Time

Measured Actual

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

Va
ria

nc
e

of
Es

tim
at

e

Number of points in average

Measured Actual

The best estimate is the mean.
Variance of the estimate decreases as 1/N.
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Remarks and Questions

For a stationary process that represents a random constant, averaging over more
points results in an improved estimate.
What will happen if the same is applied to a non-constant?
If we have a measurement corrupted with noise, can we use the statistical properties
of the noise, and compute an estimate that maximizes the probability that this
measurement actually occurred?
For real-time applications, can we solve the estimation problem recursively?
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Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

~zk = hk(~xk , ~vk) (2)

The state process is Markov chain, i.e., p(~xk |~x1, . . . , ~xk−1) = p(~xk |~xk−1) and the
distribution of ~zk conditional on the state ~xk is independent of previous state and
measurement values, i.e., p(~zk |~x1:k , ~z1:k−1) = p(~zk |~xk)
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(n × 1) state vector at time k
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Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

Possibly non-linear function,
fk : Rn ×Rnw 7→ Rn

~zk = hk(~xk , ~vk) (2)

Possibly non-linear function,
hk : Rm ×Rnv 7→ Rm

The state process is Markov chain, i.e., p(~xk |~x1, . . . , ~xk−1) = p(~xk |~xk−1) and the
distribution of ~zk conditional on the state ~xk is independent of previous state and
measurement values, i.e., p(~zk |~x1:k , ~z1:k−1) = p(~zk |~xk)
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Given State-Space Equations
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i.i.d state noise

~zk = hk(~xk , ~vk) (2)

i.i.d measurement noise
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Objective

Probabilistically estimate ~xk using previous measurement ~z1:k . In other words, construct
the pdf p(~xk |~z1:k).

Optimal MMSE Estimate

E{‖~xk − ~̂xk‖2|~z1:k} =

∫
‖~xk − ~̂xk‖2p(~xk |~z1:k)d~xk (3)

in other words find the conditional mean

~̂xk = E{~xk |~z1:k} =

∫
~xkp(~xk |~z1:k)d~xk (4)
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Assumptions

~wk and ~vk are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

E{ ~wk ~wT
i } =

{
Qk i = k

0 i 6= k
(5)

E{ ~vk~vT
i } =

{
Rk i = k

0 i 6= k
(6)

E{ ~wk~vT
i } =

{
0 ∀i , k (7)
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Assumptions

fk and hk are both linear, e.g., the state-space system equations may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)
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Assumptions

fk and hk are both linear, e.g., the state-space system equations may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)

(n × n) transition matrix relating ~xk−1 to ~xk
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Assumptions

fk and hk are both linear, e.g., the state-space system equations may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)

(m × n) matrix provides noiseless connection between
measurement and state vectors
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)

(n ×m) Kalman gain
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State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1) (12)

Pk|k = (I− KkHk)Pk|k−1 (13)

Measurement innovation
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Kalman Gain

Kk = Pk|k−1H
T
k ( HkPk|k−1HT

k + Rk )−1 (14)
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Kalman Gain

Kk = Pk|k−1H
T
k ( HkPk|k−1HT

k + Rk )−1 (14)

Covariance of the innovation term
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Kalman filter data flow

Initial estimate (~̂x0 and P0)
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)

Update error covariance
Pk|k = Pk|k−1 − KkHkPk|k−1
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Kalman filter data flow

Initial estimate (~̂x0 and P0)

Compute Kalman gain
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk )

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 + Kk (~zk − Hk~̂xk|k−1)

Update error covariance
Pk|k = Pk|k−1 − KkHkPk|k−1

Project ahead
~̂xk|k−1 = Φk−1~̂xk−1|k−1

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1

k = k + 1
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System Model

~̇x(t) = F(t)~x(t) + G(t)~w(t) (15)

To obtain the state vector estimate ~̂x(t)

E{~̇x(t)} =
∂

∂t
~̂x(t) = F(t)~̂x(t) (16)

Solving the above equation over the interval t − τs , t

~̂x(t) = e(
∫ t
t−τs F(t′)dt′)~̂x(t − τs) (17)

where Fk−1 is the average of F at times t and t − τs .
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System Model Discretization

As shown in the Kalman filter equations the state vector estimate is given by

~̂xk|k−1 = Φk−1~̂xk−1|k−1

Therefore,

Φk−1 = eFk−1τs ≈ I + Fk−1τs (18)

where Fk−1 is the average of F at times t and t− τs , and first order approximation is used.
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Discrete Covariance Matrix Qk

Assuming white noise, small time step, G is constant over the integration period, and the
trapezoidal integration

Qk−1 ≈
1
2

[
Φk−1Gk−1Q(tk−1)GT

k−1Φ
T
k−1 + Gk−1Q(tk−1)GT

k−1

]
τs (19)

where
E{~w(η)~wT (ζ)} = Q(η)δ(η − ζ) (20)
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Example: random constant

ẋ(t) = 0, yk = xk + vk

Design a Kalman filter to estimate xk

What is the
discretized system?
What is φ, Q , H , R
and P?
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Example: first order Markov noise

State Equation

ḃ(t) = − 1
Tc

b(t) + w(t) (21)

Autocorrelation Function

E{b(t)b(t + τ)} = σ2
BI e
−|τ |/Tc (22)

where
E{w(t)w(t + τ)} = Q(t)δ(t − τ) (23)

Q(t) =
2σ2

BI

Tc
(24)

and Tc is the correlation time.
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Discrete First Order Markov Noise

State Equation

bk = e−
1
Tc
τsbk−1 + wk−1 (25)

System Covariance Matrix

Q = σ2
BI [1− e−

2
Tc
τs ] (26)
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Autocorrelation of 1st order Markov

τ

Rb(τ) = σ2
BI e
−|τ |/Tc

σ2

e

σ2
BI

Tc
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Small Correlation Time Tc = 0.01
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Larger Correlation Time Tc = 0.1
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Linearized System

Fk =
∂f(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

, Hk =
∂h(~x)

∂~x

∣∣∣∣
~x=~̂xk|k−1

(27)

where

∂f(~x)

∂~x
=


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
... . . . ...

 ,
∂h(~x)

∂~x
=


∂h1
∂x1

∂h1
∂x2

· · ·
∂h2
∂x1

∂h2
∂x2

· · ·
... . . . ...

 (28)
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Sequential Processing

If R is a block matrix, i.e., R = diag(R1,R2, . . . ,R r ). The R i has dimensions pi × pi . Then,
we can sequentially process the measurements as:
For i = 1, 2, . . . , r

Ki = Pi−1(Hi )T (HiPi−1(Hi )T + Ri )−1 (29)

~̂x i
k|k = ~̂x i

k|k + Ki (~z i
k − Hi~̂x i−1

k|k ) (30)

Pi = (I− KiHi )Pi−1 (31)

where ~̂x0
k|k = ~̂xk|k−1, P0 = P0

k|k−1 and Hi is pi × n corresponding to the rows of H
corresponding the measurement being processed.
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Observability

The system is observable if the observability matrix

O(k) =


H(k − n + 1)

H(k − n − 2)Φ(k − n + 1)
...

H(k)Φ(k − 1) . . .Φ(k − n + 1)

 (32)

where n is the number of states, has a rank of n. The rank of O is a binary indicator and
does not provide a measure of how close the system is to being unobservable, hence, is
prone to numerical ill-conditioning.
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A Better Observability Measure

In addition to the computation of the rank of O(k), compute the Singular Value
Decomposition (SVD) of O(k) as

O = UΣV ∗ (33)

and observe the diagonal values of the matrix Σ. Using this approach it is possible to
monitor the variations in the system observability due to changes in system dynamics.
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Remarks

Kalman filter is optimal under the aforementioned assumptions,
and it is also an unbiased and minimum variance estimate.
If the Gaussian assumptions is not true, Kalman filter is biased and not minimum
variance.
Observability is dynamics dependent.
The error covariance update may be implemented using the Joseph form which
provides a more stable solution due to the guaranteed symmetry.

Pk|k = (I −K kHk) Pk|k−1 (I −K kHk)T + K kRkKT
k (34)

Problem Bayesian Estimation Kalman Filter Example EKF Other Solutions References

Aly El-Osery, Kevin Wedeward (NMT) EE 565: Position, Navigation, and Timing April 12, 2020 25 / 28



Unscented Kalman Filter (UKF)

Propagates carefully chosen sample points (using unscented transformation) through the
true non-linear system, and therefore captures the posterior mean and covariance
accurately to the second order.
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Particle Filter

A Monte Carlo based method. It allows for a complete representation of the state
distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian
assumptions.
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Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, by Zhe Chen
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