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Overview
Position, velocity and attitude drift unless the INS is aided. There are some opportunistic

situations that provide information to the INS to initialize itself. Two categories of alignment
• Coarse Alignment
• Fine Alignment
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Self-Alignment

1. Coarse Alignment: Use knowledge of the gravity vector and earth rate provided by
the three accelerometers, and the knowledge of the earth rate vector provided by the
gyroscopes.

2. Fine Alignment: Needed in quasi-stationary situations. Uses the fact that any posi-
tion, velocity changes are considered disturbances, and the knowledge of the gravity
vector and earth rate to estimate the body’s attitude.

Latitude needs to be known. .3

Coarse Alignment: Approach 1
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Ĉb

n =

C11 C12 C13

C21 C22 C23

C31 C32 C33


where

1



C11 =
ω̃b
x

ωie cos(Lb)
− f̃ bx tan(Lb)

g

C21 =
ω̃b
y

ωie cos(Lb)
−
f̃ by tan(Lb)

g

C31 =
ω̃b
z

ωie cos(Lb)
− f̃ bz tan(Lb)

g

C12 =
f̃ bz ω̃

b
y − f̃ by ω̃

b
z

gωie cos(Lb)

C22 =
−f̃ bz ω̃b

x + f̃ bxω̃
b
z

gωie cos(Lb)

C32 =
f̃ by ω̃

b
x − f̃ bxω̃

b
y

gωie cos(Lb)

C13 =
−f̃ bx
g

C23 =
−f̃ by
g

C33 =
−f̃ bz
g

Must ensure that the DCM is properly orthogonalized. .5

Fine Alignment

• Use full INS mechanization
• Use equivalent to GPS aided error mechanization
• Setup up measurements

1. Specific force measurement
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2. Angular rate measurement
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3. Position measurement: deviation from initial position
4. Velocity measurement: deviation from zero
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Specific force measurement
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Angular Rate Measurement

δ~ω n
in = ~ω n

in − ~̂ωn
in

= (I + [ ~δψ n
nb×])Ĉn
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Error State and Measurement Matrix
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where the measurements are: position error, velocity error, specific force error, and angular
velocity errors, respectively. .9

Challenges
There is no mechanism in the above formulation to estimate ~ω n

d . If it can be modelled
as white noise then the filter will be able to handle it. On the other hand, if it is correlated
type of disturbance, additional measures must be taken to account for it. .10
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