Lecture INS/GPS Integration EE 565: Position, Navigation, and Timing

Lecture Notes Update on April 23, 2020

Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaboration with Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

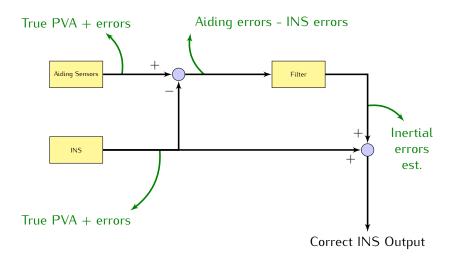
.1

.2

.3

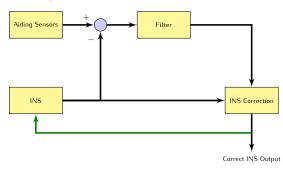
1 Integration Architectures

Open-Loop Integration

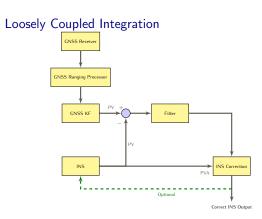


Closed-Loop Integration

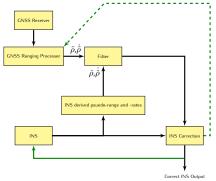
If error estimates are fedback to correct the INS mechanization, a reset of the state estimates becomes necessary.



1



- Simple
- Cascade KF therefore integration KF BW must be less than that of GNSS KF (e.g. update interval of 10s)
- Minimum of 4 satellites required



- No cascade KF
- KF BW must be kept less than the GNSS tracking loop
- Does not require 4 satellites

2 Measurement Models

ECEF INS/GNSS Loosely Coupled

$$\vec{\mathbf{z}}_{k}^{e} = \begin{pmatrix} \tilde{\vec{\mathbf{r}}}_{GPS} - \hat{\vec{\mathbf{r}}}_{eb}^{e} \\ \tilde{\vec{\mathbf{v}}}_{GPS} - \hat{\vec{\mathbf{v}}}_{eb}^{e} \end{pmatrix}$$
(1)

.4

.5

.6

$$\mathbf{H} = \begin{pmatrix} 0_{3\times3} & 0_{3\times3} & \mathbf{I}_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & \mathbf{I}_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \end{pmatrix}$$
(2)

Theoretically, the lever arm from the INS to the GNSS antenna needs to be included, but in practice, the coupling of the attitude errors and gyro biases into the measurement through the lever arm is week.

INS Derived Psuedo-Range and -Rates

The computed INS psuedo-range and rates with respect to the jth satellite, $\hat{
ho}_j$ and $\dot{\hat{
ho}}_j$

$$\hat{\rho}_j = \sqrt{[\vec{\mathbf{r}}_{es,j}^e - \hat{\vec{\mathbf{r}}}_{eb}^e]^T [\vec{\mathbf{r}}_{es,j}^e - \hat{\vec{\mathbf{r}}}_{eb}^e]} + \delta\hat{\rho}_{rc,j}$$
(3)

$$\dot{\hat{\rho}}_j = \vec{\mathbf{u}}_j^T [\vec{\mathbf{v}}_{s,j}^e - \hat{\vec{\mathbf{v}}}_{eb}^e]^T + \delta \dot{\hat{\rho}}_{rc,j}$$
(4)

where

$$\vec{\mathbf{u}}_{j} = \frac{\vec{\mathbf{r}}_{es,j}^{e} - \vec{\mathbf{r}}_{eb}^{e}}{\|\vec{\mathbf{r}}_{es,j}^{e} - \hat{\vec{\mathbf{r}}}_{eb}^{e}\|}$$
(5)

.7

.8

.9

.10

ECEF INS/GNSS Tightly Coupled

Pseudo-ranges are used instead of XYZ.

$$\vec{\mathbf{z}} = \begin{pmatrix} \vec{\mathbf{z}}_{\rho} \\ \vec{\mathbf{z}}_{\dot{\rho}} \end{pmatrix} \tag{6}$$

where

$$\vec{\mathbf{z}}_{\rho} = (\rho_{gps,1} - \hat{\rho}_1, \rho_{gps,2} - \hat{\rho}_2, \dots, \rho_{gps,n} - \hat{\rho}_n)$$
 (7)

$$\vec{\mathbf{z}}_{\dot{\rho}} = (\dot{\rho}_{gps,1} - \dot{\hat{\rho}}_1, \dot{\rho}_{gps,2} - \dot{\hat{\rho}}_2, \dots, \dot{\rho}_{gps,n} - \dot{\hat{\rho}}_n)$$
(8)

$$\vec{\mathbf{x}}(t) = \begin{pmatrix} \delta \vec{\psi}_{eb}^{e} & \delta \vec{\mathbf{v}}_{eb}^{e} & \delta \vec{\mathbf{r}}_{eb}^{e} & \vec{\mathbf{b}}_{a} & \vec{\mathbf{b}}_{g} & \delta \rho_{rc} & \delta \dot{\rho}_{rc} \end{pmatrix}^{T}$$
(9)

 $\rho_{gps,j}$, and $\dot{\rho}_{gps,j}$ and $\hat{\rho}_j$, and $\dot{\hat{\rho}}_j$ are the psuedo-ranges and rates obtained from the GNSS and INS, respectively, for the *j*th satellite. These equations are none linear and an EKF needs to be used. $\delta \rho_{rc}$ and $\delta \dot{\rho}_{rc}$ are the clock bias and drift.

Extended Kalman Filter (EKF)

$$\mathbf{F}_{k} = \left. \frac{\partial \mathbf{f}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} \right|_{\vec{\mathbf{x}} = \hat{\vec{\mathbf{x}}}_{k|k-1}}, \qquad \mathbf{H}_{k} = \left. \frac{\partial \mathbf{h}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} \right|_{\vec{\mathbf{x}} = \hat{\vec{\mathbf{x}}}_{k|k-1}}$$
(10)

where

$$\frac{\partial \mathbf{f}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix}, \qquad \qquad \frac{\partial \mathbf{h}(\vec{\mathbf{x}})}{\partial \vec{\mathbf{x}}} = \begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \cdots \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \cdots \\ \vdots & \ddots & \vdots \end{pmatrix}$$
(11)

Tightly Coupled Linearized Measurement Matrix

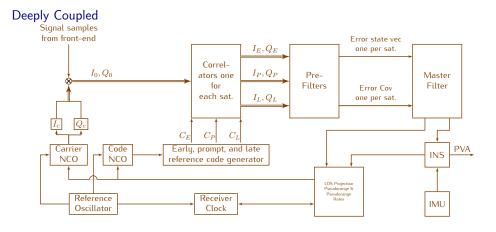
$$\mathbf{H} = \begin{pmatrix} 0_{1\times3} & 0_{1\times3} & \vec{\mathbf{u}}_{1}^{T} & 0_{1\times3} & 0_{1\times3} & 1 & 0_{1\times3} \\ 0_{1\times3} & 0_{1\times3} & \vec{\mathbf{u}}_{2}^{T} & 0_{1\times3} & 0_{1\times3} & 1 & 0_{1\times3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1\times3} & 0_{1\times3} & \vec{\mathbf{u}}_{n}^{T} & 0_{1\times3} & 0_{1\times3} & 1 & 0_{1\times3} \\ \hline 0_{1\times3} & \vec{\mathbf{u}}_{1}^{T} & 0_{1\times3} & 0_{1\times3} & 0_{1\times3} & 1 \\ 0_{1\times3} & \vec{\mathbf{u}}_{2}^{T} & 0_{1\times3} & 0_{1\times3} & 0_{1\times3} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0_{1\times3} & \vec{\mathbf{u}}_{n}^{T} & 0_{1\times3} & 0_{1\times3} & 0_{1\times3} & 1 \end{pmatrix}$$
(12)

3

Deeply Coupled

In deeply coupled GPS/INS integration

- the integration architecture utlizes the INS to aid in the tracking loops,
- allows fast aquistion,
- performance improvement with low signal-to-noise environments, and
- more resistance to jamming.



3 Other Considerations

Observability

Are the states observable given a certain set of measurements? The system is observable if the observability matrix

$$\mathcal{O}(k) = \begin{bmatrix} \mathbf{H}(k-n+1) \\ \mathbf{H}(k-n-2)\Phi(k-n+1) \\ \vdots \\ \mathbf{H}(k)\Phi(k-1)\dots\Phi(k-n+1) \end{bmatrix}$$
(13)

where n is the number of states, has a rank of n. The rank of O is a binary indicator and does **not** provide a measure of how close the system is to being unobservable, hence, is prone to numerical ill-conditioning.

A Better Observability Measure

In addition to the computation of the rank of $\mathcal{O}(k)$, compute the Singular Value Decomposition (SVD) of $\mathcal{O}(k)$ as

$$\mathcal{O} = U\Sigma V^* \tag{14}$$

and observe the diagonal values of the matrix Σ . Using this approach it is possible to monitor the variations in the system observability due to changes in system dynamics.

Corrupt/Missing Data

In Many cases the data from the aiding sensor may get corrupt and even not available. In those cases we can't use those measurements in the Kalman filter. Therefore

- 1. Set the Kalman gain to zero, or
- 2. Do not run the state or error covariance update steps.

.11

.12

.13

.14

.15