Lecture

Navigation Mathematics: Coordinate Frames

EE 565: Position, Navigation and Timing

Lecture Notes Update on January 16, 2020

Kevin Wedeward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with

Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

1 Coordinate Frames

Coordinate Frames

Right-hand Cartesian coordinate frame α has

- 1. origin o_{α} at which frame is located, and
- 2. orthonormal vectors $x_{\alpha}, y_{\alpha}, z_{\alpha}$ that serve as axes and indicate positive directions.

Coordinate Frames

This definition implies

$$x_{\alpha} \cdot x_{\alpha} = y_{\alpha} \cdot y_{\alpha} = z_{\alpha} \cdot z_{\alpha} = 1$$

$$x_{\alpha} \cdot y_{\alpha} = y_{\alpha} \cdot z_{\alpha} = z_{\alpha} \cdot x_{\alpha} = 0$$

$$x_{\alpha} \times y_{\alpha} = z_{\alpha}$$

$$y_{\alpha} \times z_{\alpha} = x_{\alpha}$$

$$z_{\alpha} \times x_{\alpha} = y_{\alpha}$$

.1

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

2 Earth-Centered Inertial (ECI) Frame

Earth-Centered Inertial (ECI) Frame

ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
 - effects of earth's orbit around sun and motion of the galaxy are very small (smaller than can be measured with inertial sensors) and neglected
 - ECI will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame
 - Gyroscopes measure rate of change of orientation
 - Accelerometers measure linear acceleration
- \bullet referred to as i-frame

ECI Frame

- origin o_i of ECI is located near the center of mass (center of ellipsoidal representation) of the earth
- ullet z_i -axis points along the nominal axis of rotation of the earth
 - true north **not** magnetic north!
 - spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value

.4

.3

- x_i -axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox (point in time when sun is in the equatorial plane)
 - defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_i -axis chosen to complete right hand coordinate system (90° ahead of x_i in direction of earth's rotation)

The ECI coordinate frame does not rotate with the earth

ECI Frame

- o_i at earth's center
- z_i -axis points along the earth's axis of rotation
- x_i -axis points towards sun at vernal (spring) equinox
- y_i -axis completes a right hand coordinate system

3 Earth-Centered Earth-Fixed (ECEF) Frame

Earth-Centered Earth-Fixed (ECEF) Frame

ECEF Frame

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- \bullet referred to as e-frame

ECEF Frame

- ullet origin o_e is located (nearly) at the center of the mass of the earth (co-located with ECI's o_i)
- z_e -axis points along the nominal axis of earth's rotation (same as ECI's z_i)
- \bullet x_e -axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)

- x_e points from o_e towards 0° longitude and 0° latitude (a little west of central Africa)
- ullet y_e -axis is chosen to complete right hand coordinate system

ECEF Frame

- ullet z_e -axis points along axis of earth's rotation
- \bullet x_e -axis points towards zero latitude and zero longitude
- ullet y_e -axis completes right hand coordinate system
- NMT's (lat, long) $\approx (34.07^{\circ}, -106.9^{\circ}) = (34.07^{\circ}, 253.1^{\circ})$

4 Local Navigation (Nav) Frame

Local Navigation (Nav) Frame

Nav Frame

- typically not fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- ullet referred to as n-frame

Nav Frame

- ullet origin o_n is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z_n -axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- ullet x_n y_n axes then constrained to lie in plane locally-level (tangential) to the earth's surface
 - x_n -axis points to the north pole
 - y_n -axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame
 - $x_n o \mathsf{North}$, $y_n o \mathsf{East}$, and $z_n o \mathsf{Down}$

.12

.10

.11

4

Nav Frame

- o_n on (potentially moving) body
- x_n -axis points north
- y_n -axis points east
- z_n -axis points "down"

5 Body Frame

Body Frame

Body Frame

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o_b located at the center of mass of the body (co-located with Nav frame's o_n)
- x_b -axis points "forward" wrt moving body
- z_b -axis points loosely "down"
 - varies with the roll/pitch of the vehicle
- \bullet y_b -axis chosen to complete right hand coordinate system
- \bullet referred to as b-frame

Body Frame

- body frame is fixed with respect to the vehicle
- ullet x_b "forward"
- z_b "down"
- y_b completes right hand coordinate system ("right")

.13

Body Frame

6 Other Frames

Other Frames

- Wander Azimuth Frame (alternative to the Nav frame)
 - does not always point north (x- and y- axes displaced from north and east by an angle that varies with location on the earth) to avoid numerical stability problems near the poles
- Local Tangential Frame
 - typically, refers to another type of ECEF frame fixed to the Earth's surface (not moving like the n-frame)
 - tangent to the Earth's surface and often aligned with environmental feature such as a building, field, room or road
- Sensor/Instrument Frame
 - attached to body of sensor that may be displaced from a vehicle's center of mass

The End

.18