Lecture

Navigation Mathematics: Coordinate Frames

EE 565: Position, Navigation and Timing

Lecture Notes Update on January 16, 2020

Kevin Wedeward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with

Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University

1 Coordinate Frames

Coordinate Frames

Right-hand Cartesian coordinate frame α has

1. origin o_{α} at which frame is located, and
2. orthonormal vectors $x_{\alpha}, y_{\alpha}, z_{\alpha}$ that serve as axes and indicate positive directions.

Coordinate Frames
This definition implies

$$
\begin{gathered}
x_{\alpha} \cdot x_{\alpha}=y_{\alpha} \cdot y_{\alpha}=z_{\alpha} \cdot z_{\alpha}=1 \\
x_{\alpha} \cdot y_{\alpha}=y_{\alpha} \cdot z_{\alpha}=z_{\alpha} \cdot x_{\alpha}=0 \\
x_{\alpha} \times y_{\alpha}=z_{\alpha} \\
y_{\alpha} \times z_{\alpha}=x_{\alpha} \\
z_{\alpha} \times x_{\alpha}=y_{\alpha}
\end{gathered}
$$

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

2 Earth-Centered Inertial (ECI) Frame

Earth-Centered Inertial (ECI) Frame
ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
- effects of earth's orbit around sun and motion of the galaxy are very small (smaller than can be measured with inertial sensors) and neglected
- ECl will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame
- Gyroscopes measure rate of change of orientation
- Accelerometers measure linear acceleration
- referred to as i-frame

ECI Frame

- origin o_{i} of ECl is located near the center of mass (center of ellipsoidal representation) of the earth
- z_{i}-axis points along the nominal axis of rotation of the earth
- true north not magnetic north!
- spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value
- x_{i}-axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox (point in time when sun is in the equatorial plane)
- defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_{i}-axis chosen to complete right hand coordinate system $\left(90^{\circ}\right.$ ahead of x_{i} in direction of earth's rotation)

The ECI coordinate frame does not rotate with the earth
\qquad

ECI Frame

- o_{i} at earth's center
- z_{i}-axis points along the earth's axis of rotation
- x_{i}-axis points towards sun at vernal (spring) equinox
- y_{i}-axis completes a right hand coordinate system

3 Earth-Centered Earth-Fixed (ECEF) Frame

Earth-Centered Earth-Fixed (ECEF) Frame
 ECEF Frame

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- referred to as e-frame

ECEF Frame

- origin o_{e} is located (nearly) at the center of the mass of the earth (co-located with ECl's o_{i})
- z_{e}-axis points along the nominal axis of earth's rotation (same as ECI's z_{i})
- x_{e}-axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
- tied to concept of latitude and longitude
- x_{e} points from o_{e} towards 0° longitude and 0° latitude (a little west of central Africa)
- y_{e}-axis is chosen to complete right hand coordinate system

ECEF Frame

- z_{e}-axis points along axis of earth's rotation
- x_{e}-axis points towards zero latitude and zero longitude
- y_{e}-axis completes right hand coordinate system
- NMT's (lat, long) $\approx\left(34.07^{\circ},-106.9^{\circ}\right)=\left(34.07^{\circ}, 253.1^{\circ}\right)$

4 Local Navigation (Nav) Frame

Local Navigation (Nav) Frame

Nav Frame

- typically not fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- referred to as n-frame

Nav Frame

- origin o_{n} is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z_{n}-axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- $x_{n}-y_{n}$ axes then constrained to lie in plane locally-level (tangential) to the earth's surface
- x_{n}-axis points to the north pole
- y_{n}-axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame

$$
-x_{n} \rightarrow \text { North, } y_{n} \rightarrow \text { East, and } z_{n} \rightarrow \text { Down }
$$

Nav Frame

- o_{n} on (potentially moving) body
- x_{n}-axis points north
- y_{n}-axis points east
- z_{n}-axis points "down"

5 Body Frame

Body Frame
Body Frame

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o_{b} located at the center of mass of the body (co-located with Nav frame's o_{n})
- x_{b}-axis points "forward" wrt moving body
- z_{b}-axis points loosely "down"
- varies with the roll/pitch of the vehicle
- y_{b}-axis chosen to complete right hand coordinate system
- referred to as b-frame \qquad

Body Frame

- body frame is fixed with respect to the vehicle
- x_{b} "forward"
- z_{b} "down"
- y_{b} completes right hand coordinate system ("right")

Body Frame

6 Other Frames

Other Frames

- Wander Azimuth Frame (alternative to the Nav frame)
- does not always point north ($x-$ and y - axes displaced from north and east by an angle that varies with location on the earth) to avoid numerical stability problems near the poles
- Local Tangential Frame
- typically, refers to another type of ECEF frame fixed to the Earth's surface (not moving like the n-frame)
- tangent to the Earth's surface and often aligned with environmental feature such as a building, field, room or road
- Sensor/Instrument Frame
- attached to body of sensor that may be displaced from a vehicle's center of mass
\qquad
The End

