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1 Review

Review

Rotation Matrices R, C
e Notation to be adopted:
— C represents an orientation
— R represents a rotation
e Sequence of rotations can be composed via multiplication of rotation matrices

— rotations about relative axis = post-/right-multiply
Ctinal = Cinitial R

— rotations about fixed axis = pre-/left-multiply
Ctinal = RCinitial

e 3 x3 =9 elements with 6 constraints = 3 parameters are sufficient to describe
orientation




Review - Example

What is orientation of ECEF
frame resolved in ECI frame, t.e.

Cci?
‘ cosf;e —sinb;, 0
C:=R.p, = |sinbe cosbi 0
0 0 1

Vernal Equinox

What is 6,.? angle from frame {i} to frame {e}; here 0;c = wic(t — to)

Review - Example

R

Vernal Equinox

What is the nav frame resolved in the ECEF frame, i.e. C5?

2 Roll-Pitch-Yaw Angles

Roll-Pitch-Yaw Angles
Roll-Pitch-Yaw angles

e often used to represent orientation of aircraft

e three angles (¢, 0, v) that represent the sequence of rotations about the x—, y— and
z—axes of a fixed frame

e given angles (¢, 0, 1), equivalent rotation matrix can be found via

Crpy = R, yRyoRys

_c¢ -5y 0 co 0 sp 1 0 0
= S¢ Cy 0 0 1 0 0 C¢ —8¢
0 0 1 —Sp 0 Co 0 S¢p Cop

_0901/, CpSSp — CpSy  ChpCypSe + S¢Sy
= |CoSy CpCy + S9SpSy  CpSeSy — CySe
—Sp CoS¢ CoCy

Roll-Pitch-Yaw Angles

Given a rotation matrix that describes a desired orientation

Cii Ci2 Cis
Caesired = [C21 Caz  Cas
C31 Csp Css



Roll-Pitch-Yaw angles (¢, 6, ¥) can be found (the inverse solution) by equating combina-

tions of terms

CoCy | CySpSe — CpSy  CeCySo + S¢Sy Cu| Cia Ci3
CoSy | CoCyp + S08¢pSy  CpSeSy — CypSe | = ||Car| Caa Cos
—sg oS CoCy C31 O3 Cs3
021 CHSqp
- = = tan(¢
011 CoCy ( )
Roll-Pitch-Yaw Angles
CHCyy  CoypSeSp — CpSyp  CpCoyhSh + S¢pSqp 011 012 013
CoSy  CoCy + 50545y  CpSoSy — CypSp| = [Ca1 Ca Cos
0 Ca1
032 CoS¢
232 _ 9% _ gan(g)
033 CpCy
CoCy  CypSPSp — CpSeyy  CpCypSo + S¢Sy Ci1 Cia Ci3
CoSy  CoCy + 8954Sy  CpS9Sy — CySe| = | Car Cog  Cag
—%6 C1] [Ca] [Cas
~C31 —(—s0) 59

= = — = tan(0)
V05 + 03 \/cg(si +c) @

3 Angle-Axis

Angle-Axis
Angle-Axis
e one rotation about general axis will be used to describe orientation, so does not have
the “rotation in sequence” issue
e rotation matrix C' can be realized via rotation away from initial frame by angle 6 about
appropriately chosen axis k= [k1, ko, kg]T of rotation
e assume k is a unit vector

Angle-Axis
e Rotation matrix can be derived by rotating one
of the principal axis (z, y, or z) onto the vector
k, performing a rotation of 6, and finally undoing
the original changes.
e Common sequence is

Rpy=R.a Ryp R:p Ry p R:—a
——— ——— k

align z with k put frame back relative to &




Angle-Axis

sina =

ko k1
—, oS = ——————
Vk? + k2 Vk? + k3

sinf8 =1/k? + k2, cosf =ks

the composition of rotations becomes
Noting

k%Ve + co kikoVy — kssg  k1ksVp + kasg

= |kikoVo + k3sg k3Vy + cg koksVe — kise
k1k3Vy — kasg  koksVp + k1sg k3Vy + co

RE,&

where versin(8) = Vy =1 — ¢y.
Angle-Axis - Alternate Approach

Alternate approach to development of angle-axis is to relate rotation matrix to its equiv-
alent angle-axis pair by

- = r0(t)
Ri oy = e”
where
skew-symmetric
. 0 —kz ke
K = [kx] = k3 0 —kl
—ky ki 0
. . . . . - T
is the skew-symmetric matrix version of the axis vector k = [k:l ko kg] and kT = —k.
Angle-Axis - Rodrigues Formula
e Using Taylor expansion of matrix-exponential
20%(t) | K203(t)
L= ) = r .
Ri gy =€ =T+ rO(t)+ o1 + 3l +
which, after a bit of manipulation (recalling Taylor series of sine and cosine and noting
k? = —k), can be shown to be

Rodrigues Formula
Rg gy =L +sin(0(t))r + [1 — cos(60(1))] K>

e Multiplying out the right hand side of the above equation gives us the same rotation
matrix as that in Eq. 1 shown previously.

Angle-Axis to Rotation Matrix

Desired rotation matrix to (k,0) - the inverse problem

[ k?Vp + co k1kaVy — k3sg  ki1ksVp + k‘250:| |:7“11 12 T13
)= =

k1koVp + k3sg k2Vp + co kok3Vp — k1sg o1 122 T23| = Riesired
kiksVy — kase  kak3Vp + kisg k2Vp +co T3l T32 733

RE,

-
e find angle-axis pair (k, 0) needed to realize desired rotation matrix
e look at trace of rotation matrix and recall Vy =1 — cosé

Tr (RE9> = [k7 + k3 + k3] (1 —cosf) + 3cosf =1+ 2cosf

Tr (R, ) — 1 _1
— 0 = cos™! — ] = cos™! (7’11 + 7"222+ 733 >
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Angle-Axis to Rotation Matrix
Now for the axis of rotation; a review of the structure suggests

r32 — 123 = 2k159
r13 — 131 = 2k25¢

ro1 — T12 = 2k35¢

k1 32 — T23
- 1
=k=|k| =— |ri3—rs1
k 259
3 21 —T12
15
Angle-Axis - Example
A satellite orbiting the earth can be made to point it's telescope at a desired star by
performing the following motions
The Hubble telescope
1. Rotate about it's z-axis by —30°, then
2. Rotate about it's new z-axis by 50°, then finally What
3. Rotate about it's initial y-axis by 40°.
is its final orientation wrt the starting orientation?
CHinat = R(g,200) R(z,—300) R(2,500)
0.766044 0 0.642788 1 0 0 0.642788 —0.766044 0 0.246202 —0.793412 0.55667
= 0 1 0 0 0.866025 0.5 0.766044 0.642788 o| = 0.663414 0.663414 0.5
—0.642788 0 0.766044 0 —0.5 0.866025 0 0 1 —0.706588 0.246202 0.246202
16
Angle-Axis - Example
e In order to save energy it is desirable to perform this change in orientation with only
one rotation — How?
e Perform a single, equivalent angle-axis rotation with
Tr (Ctart) <1
0 = cos™! =76.5°
2
R 1 T3 — T'93 —0.130495
k= oyl KEE Rk e Tl B 0.649529
s
O lro =712 0.749055
17
Angle-Axis - Three Parameters
Angle-Axis representation can be made three parameters via
K =0k
such that
0= |IK]|
and .
- K
E=—5
1K
18
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4 Quaternions

Quaternions - Singularity Problems

Euler angles, RPY angles and angle-axis consist three elements, but they are not unique,
e.g., there are orientations that are represented by different Euler angles, RYP angles and
angle-axis.

Quaternion

e Quaternions are 4-element representation of the rotation vectors where the additional
element makes quaternions unique.

e With 4 elements quaternions have the lowest dimensionality possible for a globally
nonsingular attitude representation.

Quaternions
Given an angle-axis pair (6, k) or the corresponding rotation vector K = 0k, a quaternion
is defined as

ds )
=[] | - [
7 Qy ksin(%)
qz
where
g, = cos(g) is the scalar component
o =gz, qy, qZ]T = Esin(g) is the vector component

o lal = \Ji2+ @+ + a2 = \f(cos(§)? + (ki sin(§))2 + (kasin(5))? + (kg sin(§))? =
1 = a unit quaternion

Quaternion to Rotation Matrix
Trig identities can be applied term-by-term to R, to find Rj.

r11 = ki Ve + co

= k%(l — cos(0)) + cos(0)

1 — cos(6
— o2 (7<>> N cos(0)
2 —
—_— s2(8 in2(8
sinZ(%) cos (5)75111 (5)
6 6
= cos2(7)+(2k% - 1 )51112(7)
2 ~~ 2

2 .2 2
k2+k3+k3
) )
= cos? (=) + (2kF — kZ — k3 — kZ)sin?(2)
2 2
o 0
= cos?(=) + (k% — k2 — k2)sinZ(—)
2 2
) ) 0 6
= cos? (=) + k¥ sin? (=) — k2 sin? () — k3 sin? (=)
2 2 2 2

—_— ———— e ——

2 2 2 2
a3 az a3 H

Quaternion to Rotation Matrix

G+ae—a-4¢
Rq:
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Quaternion to Rotation Matrix

r12 = k1kaVp — k3sg
= kiko(1 —cos(0)) — kssin(h)

%m(kﬂﬂw)kgsmw

2 ——
31 b4 3( <
sin;(g) 2sin(4) cos(§)

:2klsin(g)k‘gsin(g) - 2COS(g)k3Sin(g)
——— ——— ——— ———

qz qy qs 9z

= 2(qeqy — 4s9-)

Quaternion to Rotation Matrix

CHe-—a—-¢  2(¢9 — 4sq:)
Rq:

and so on ...

Quaternion to Rotation Matrix
Rotation matrix from given quaternion

2

CH+e—a—¢ 209y —as9:)  2(¢0q + dsqy)
Ri=| 2(quty +4s¢:) @G —a+a;—a  2(qq — 4sqz)
2020 — ¢sqy)  2(qy0: + 050)  @E - -+

Quaternion from Rotation Matrix
Quaternion from given rotation matrix

.23

.24
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[¢?+a2—a; — ¢ 2(¢0qy —4s9=)  2(429: + 4s4y)
Ri=| 20ty +4s0:) G —-G+a—0 2000 — qsqa)
| 2(24: — Gs4y) 2(qyq: + 4s92) G- — a4+

i1 Ti2 T3
= |ro1 722 7T23| = Rdesired
r31 T3z 733

732 — 723

1 - 1
= Qs = 5\/1+r11 4+ 199 + 133 and ¢ = Ig. |13 — T3l
21 — T12

where we have to be careful when 6 = 180° and ¢s = 0. Note issue is with conversion
rather than quaternions or rotation matrices.

Quaternions - Compose Rotations
Quaternions can be used to describe orientation and compose rotations like rotation

matrices
o CP & q¢
¢ (s =RRiRs < (5 =0RO0qQ @43




Quaternions - Properties
e Quaternion inverse or conjugate

ds
* —qx
—qy
—4z

e Vector transformation (change of coordinates) Define a “pure” vector

-]

then a vector ¥'P written in the p-frame may be transformed to the i-frame using

V=gereq!

Quaternions - Multiplication
Quaternion multiplication - first type ®

qsps — G- P

F=gop=[@p=| PP _
10p=1a8P= |, 5 pq+axp

where implementation via matrix multiplication achieved by defining

qs —qx - Qy —qz
qx qs —q: Qy
Qy qz qs —qx
qd> —Qy qx qs

Note multiplication does not commute.

[g0] =

Quaternions - Multiplication

Quaternion multiplication - second type ® (useful to re-order multiplication when certain

factorizations and coordinatizations needed)

f=q®ﬁ=[(j®]ﬁ: qsPs — 4P
P+ ps@ — |7 X P
where
Pp=p®q
and
s —49z —qy —q
[q—®] _ |9= _qg qz —qy

Quaternions - Identities
Identities for quaternions

[¢7'e] = [q®] " = [g®]"
7 '®] = [g®] " = [ge]"
[q®] = e3lk®l — cos(0/2)Z + %[7{@] sm9(}92/2)
[G®] = e3lk®] — cos(0/2)T + %[l%@] 81n9(/¢92/2)
lizs ™ = fas] " awl = g 7]
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Quaternions - ldentities

The End

.32

.33




	Review
	Roll-Pitch-Yaw Angles
	Angle-Axis
	Quaternions

