EE 565: Position, Navigation and Timing

Navigation Mathematics: Translation

Kevin Wedeward Aly El-Osery

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity, Prescott, Arizona, USA

January 30, 2020

Lecture Topics

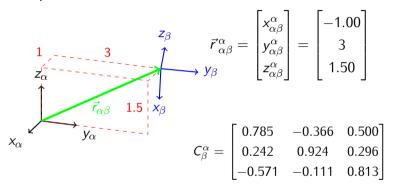
Vector Notation for Translation

- Translation Between More Than Two Coordinate Frames
- Second Example
 Second Example

Ianuaru 30, 2020

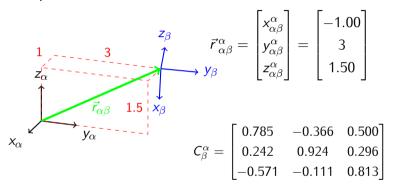
Define the vector $\vec{r}_{\alpha\beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

• specifies translation between frames



Define the vector $\vec{r}_{\alpha\beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

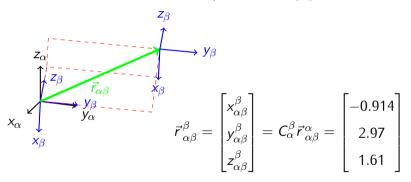
• specifies translation between frames



Now have means (and notation) to describe rotation and translation between coordinate frames.

Ianuaru 30, 2020

• Resolve, i.e., coordinatize, $\vec{r}_{\alpha\beta}$ wrt frame $\{\beta\}$.



Same vector, so same "direction" and length.

Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

notation:

lanuaru 30, 2020

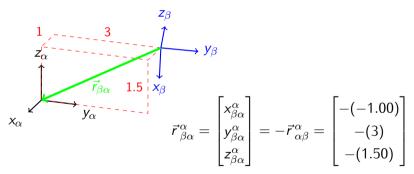
Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

• notation: $\vec{r}_{\beta\alpha} =$

lanuaru 30, 2020

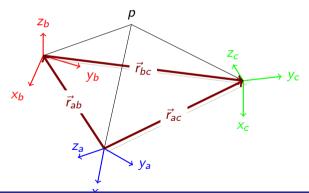
Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

• notation: $\vec{r}_{\beta\alpha} = -\vec{r}_{\alpha\beta}$

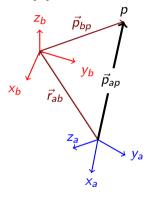


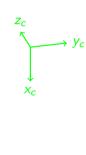
Consider three coordinate systems $\{a\}$, $\{b\}$, $\{c\}$ that have translation and rotation relative to each other.

• Knowing relationships between frames $\{a\}$, $\{b\}$, and $\{c\}$, i.e., \vec{r}_{ab} , \vec{r}_{bc} , \vec{r}_{ac} , C_b^a , C_c^b , and C_c^a , location of point p can be described in any frame, i.e., \vec{p}^a or \vec{p}^b or \vec{p}^c .



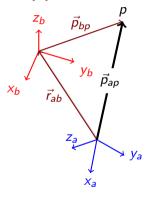
Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.





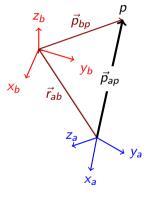
$$\bullet$$
 $\vec{p}_{ap} =$

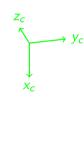
Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.



$$ullet$$
 $ec{p}_{ap}=ec{r}_{ab}+ec{p}_{bp}$

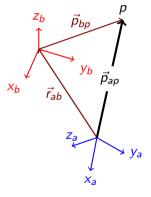
Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

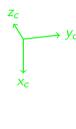




• $\vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$ In what frame?

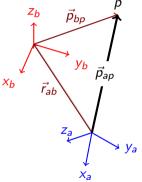
Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.





- $\vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$ In what frame?
- $\vec{p}_{ap}^{\,a} = \vec{r}_{ab}^{\,a} + \vec{p}_{bp}^{\,a}$ or $\vec{p}_{ap}^{\,b} = \vec{r}_{ab}^{\,b} + \vec{p}_{bp}^{\,b}$ or $\vec{p}_{ap}^{\,c} = \vec{r}_{ab}^{\,c} + \vec{p}_{bp}^{\,c}$

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.



 $\begin{array}{c}
z_c \\
\downarrow \\
\chi_c
\end{array}$

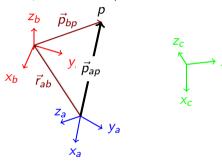
- $\vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$ In what frame?
- $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ or $\vec{p}_{ap}^{b} = \vec{r}_{ab}^{b} + \vec{p}_{bp}^{b}$ or $\vec{p}_{ap}^{c} = \vec{r}_{ab}^{c} + \vec{p}_{bp}^{c}$

Shorthand notation: $\vec{p}^a \equiv \vec{p}_{ap}^a$

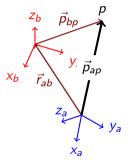
Translation Between More Than Two Coordinate Frames

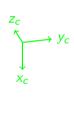
00000

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?



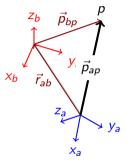
Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?

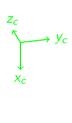




 use given relationship or vector addition

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?

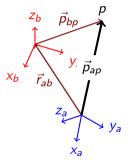


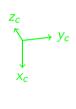


 use given relationship or vector addition

$$\Rightarrow \vec{p}_{bp}^{a} = \vec{p}_{ap}^{a} - \vec{r}_{ab}^{a}$$

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?



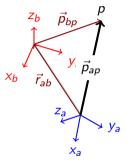


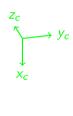
 use given relationship or vector addition

$$\Rightarrow \vec{p}^{\,a}_{\,bp} = \vec{p}^{\,a}_{\,ap} - \vec{r}^{\,a}_{\,ab}$$

• now need to reference to {b}

Given $\vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$ and/or the diagram, how would one find \vec{p}_{bp}^{b} ?





• use given relationship or vector addition

$$\Rightarrow \vec{p}^{\,a}_{\,bp} = \vec{p}^{\,a}_{\,ap} - \vec{r}^{\,a}_{\,ab}$$

• now need to reference to {b}

$$C_a^b \vec{p}_{bp}^a = C_a^b \left(\vec{p}_{ap}^a - \vec{r}_{ab}^a \right)$$

$$\Rightarrow \vec{p}_b^b = \vec{p}_b^b - \vec{r}_b^b.$$

$$\Rightarrow \vec{p}_{bp}^{\,b} = \vec{p}_{ap}^{\,b} - \vec{r}_{ab}^{\,b}$$

It is important to remember difference between recoordinatizing a vector and finding a location *wrt* a different frame.

It is important to remember difference between recoordinatizing a vector and finding a location *wrt* a different frame.

• Recoordinatizing: $\vec{p}_{ap}^{c} = C_{a}^{c} \vec{p}_{ap}^{a}$ (only frame of reference changes)

Ianuaru 30, 2020

It is important to remember difference between recoordinatizing a vector and finding a location wrt a different frame.

- Recoordinatizing: $\vec{p}_{ap}^{c} = C_a^c \vec{p}_{ap}^a$ (only frame of reference changes)
- Location wrt different frame: $\vec{p}_{cp}^c = \vec{r}_{cb}^c + C_b^c \vec{r}_{ba}^b + C_a^c \vec{p}_{ap}^a$ (vector addition in same frame) $\neq C_a^c \vec{p}_{ap}^a$

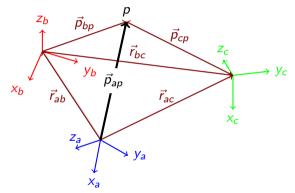
Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for

lanuaru 30, 2020

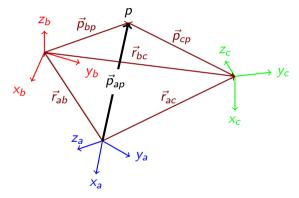
Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}



Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}

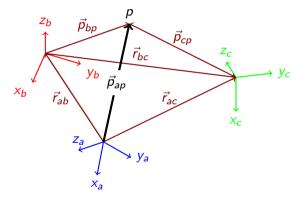


Many approaches given labeled vectors/translations.

 \vec{p}_{cp}

Determine location of point p from frame $\{c\}$;

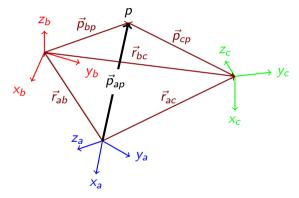
 \Rightarrow looking for \vec{p}_{cp}



$$ec{p}_{cp} = -ec{r}_{bc} + ec{p}_{bp}$$

Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}



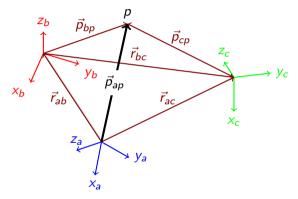
$$\vec{p}_{cp}$$

$$= -\vec{r}_{bc} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$$

Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}



$$\vec{p}_{cp}$$

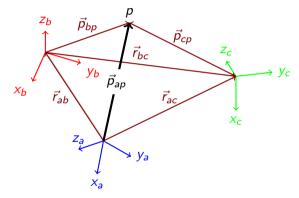
$$= -\vec{r}_{bc} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{p}_{ap}$$

Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}



Many approaches given labeled vectors/translations.

$$\vec{p}_{cp}$$

$$= -\vec{r}_{bc} + \vec{p}_{bp}$$

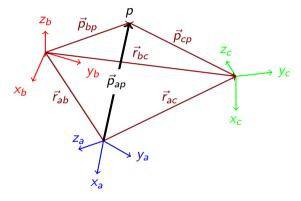
$$= -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{p}_{ap}$$

• In what frame?

Determine location of point p from frame $\{c\}$;

 \Rightarrow looking for \vec{p}_{cp}



$$\vec{p}_{cp}$$

$$= -\vec{r}_{bc} + \vec{p}_{bp}$$

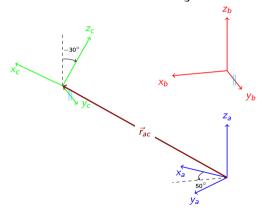
$$= -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{p}_{ap}$$

- In what frame? doesn't matter, so long as same
- Can always recoordinatize given C_b^a , C_c^b , C_a^c

Example - Given

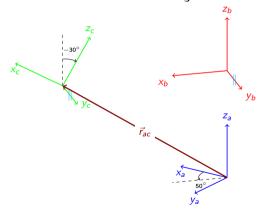
Consider the three coordinate frames $\{a\}, \{b\}, \{c\}$ shown with the rotations and translations between some frames given.



$$C_b^a = R_{z,50^{\circ}}$$
 $C_c^b = R_{y,-30^{\circ}}$
 $\vec{r}_{ab}^a = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}^T$
 $\vec{r}_{bc}^b = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^T$

Example - Given

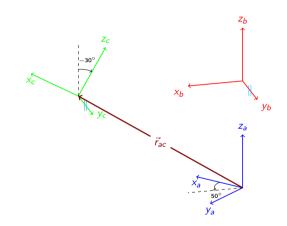
Consider the three coordinate frames $\{a\}, \{b\}, \{c\}$ shown with the rotations and translations between some frames given.



$$C_{b}^{a}=R_{z,50^{\circ}}$$
 $C_{c}^{b}=R_{y,-30^{\circ}}$
 $\vec{r}_{ab}^{a}=\begin{bmatrix}0&0&2\end{bmatrix}^{T}$
 $\vec{r}_{bc}^{b}=\begin{bmatrix}3&0&0\end{bmatrix}^{T}$
• find
 C_{c}^{a}
 \vec{r}_{ac}^{c}
 \vec{r}_{ca}^{c}

Example - Find C_c^a

$$C_c^a = C_b^a C_c^b = R_{z,50^{\circ}} R_{y,-30^{\circ}}$$



Example - Find \vec{r}_{ac}^a

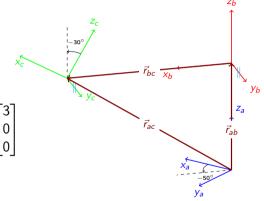
$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + \vec{r}_{bc}^{a}$$

$$= \vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + R_{z,50^{\circ}} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} \cos 50^{\circ} & -\sin 50^{\circ} & 0 \\ \sin 50^{\circ} & \cos 50^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1.93 \\ 2.30 \end{bmatrix}$$



Ianuaru 30, 2020

Example - Find \vec{r}_{ca}^c

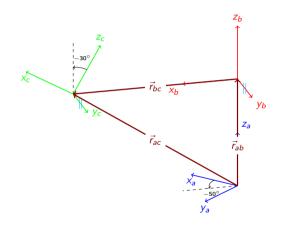
$$\vec{r}_{ca}^{c} = -\vec{r}_{ac}^{c}$$

$$= -C_{a}^{c} \vec{r}_{ac}^{a}$$

$$= -[C_{c}^{a}]^{T} \vec{r}_{ac}^{a}$$

$$= -[R_{z,50^{\circ}} R_{y,-30^{\circ}}]^{T} \begin{bmatrix} 1.93 \\ 2.30 \\ 2.00 \end{bmatrix}$$

$$= \begin{bmatrix} -3.59 \\ 0 \\ -0.232 \end{bmatrix}$$



The End

January 30, 2020