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1 Review

Review

e translation between
frames {a} and {c}:

Tac = Tab+ The
e written wrt/frame {a}

—a . —a —a
r - Tab+rbc

ac
_ —a a b
= Ta+ 0Oy




2 Introduction to Velocity

Introduction to Velocity
e Given relationship for translation between moving (rotating and translating) frames
Foe =i + G
what is linear velocity between frames?

jo. = L,
dt
d 2b
= n (Foy + CiTe)
= ﬁb‘kcl???lgc‘i»cgr;gc
e Why is Cf # 0 in general? Recoordinatization of 7%, is time-dependent.
e (¢ is directly related to angular velocity between frames {a} and {b}.

3 Derivative of Rotation Matrix and Angular Velocity - Approach |

First approach to %C’ and angular velocity
Given a rotation matrix C, one of its properties is

(G317 Cy = CRICT =1
Taking the time-derivative of the “right-inverse” property

d a a1T _i

= e+ CplGyt =0
—— ——
Qo ~Na[va
b (cprem”
—_————
Qe 17

= Q%+ 194" =0

= %, is skew-symmetric!

First approach to %C and angular velocity

Define this skew-symmetric matrix %,

0 —W, Wy
Qop = [WapX] = | w: 0 —wy
—Wy Wy 0

Note Q2, = Cp[C]T '
= Cp = 04,0

is a means of finding derivative of rotation matrix provided we can further understand
a
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First approach to %C and angular velocity
Now for some insight into physical meaning of Qf,.

e Consider a point p on a rigid body rotating with angular velocity & = [w, wy, w,]T =
0k = 0k, ky, k)7 with k a unit vector.

&

First approach to %C and angular velocity

From mechanics, linear velocity @, of point is

We Ty WyTz — WyTy 0 —w, Wy Ty
Up =W X Tp= |Wy| X |Ty| = |wale —warz| = | w; 0 —Wg | | Ty
W, T, Wy Ty — WyTy —Wy Wy 0 T,
R »
Vv

First approach to %C and angular velocity

From mechanics, linear velocity 7, of point is

Wy Ty WyT, — WyTy 0 —Ww, Wy Ty
Up =W X Tp= |Wy| X |Ty| = |wele —warz| = | w; 0 —wg | |7y
Wy T, WeTy — WyTy —Wy Wy 0 T,

Q=[wdx]

= Q) represents angular velocity and performs cross product



First approach to %C and angular velocity
Now let’s add fixed frame {a} and rotating frame {b} attached to moving body such that
there is angular velocity &y, between them.

and take derivative wrt time

N “a _ Ya =b a=b
Tq T.ap - C(b r bp + C’b pr
P N~~~ N——
Q3,Cp 0
= QuCp,

= ngfgp = [(’U gb X}ng

from which it is observed (compare to
S o P ]
Up = W X 7p) that Q% represents cross
product with angular velocity & %,.

4 Derivative of Rotation Matrix and Angular Velocity - Approach Il

Second approach to %C and angular velocity

e Another approach to developing derivative of rotation matrix and angular velocity is
based upon angle-axis representation of orientation and rotation matrix as exponen-
tial.

e This approach is included in notes.

Second approach to %C’ and angular velocity

e Since the relative and fixed axis rotations must be performed in a particular order,
their derivatives are somewhat challenging

e The angle-axis format, however, is readily differentiable as we can encode the 3
parameters by

where 0 = | K|
e Hence,

Second approach to %C and angular velocity

e For a sufficiently “small” time interval we can often consider the axis of rotation to be
~ constant (ie., k(t) = k)

e This is referred to as the angular velocity (&J(t)) or the so called “body reference”
angular velocity

Angular Velocity




Second approach to %C and angular velocity

e This definition of the angular velocity can also be related back to the rotation matrix.
Recalling that
a _ D _ kap0(t)
Cb (t) = Rk:gb,@(t) = e b

e Hence,

d d e

—C%t) = —e"ab (t)

v = ge

Herasd®) 4o
00 dt

= k& e ad Mg (1)

(kb)) Cit)

= Co(t) [Co )] = r%0()

Second approach to %C and angular velocity
Notice that

rapd(t) = Skew [kg,] (1)
= Skew [k:gbé(t)}
= Skew @3] = Qg

Therefore,
a a T a
Cy ) [Cy (D] = Qg

or

Cy = a0y

Second approach to %C and angular velocity

Note
0 —kg k2 al k2a3 — k3a2 .
Ka = k3 0 —kl as | = k3a1 — k1a3 =kxd
—k‘g ]4)1 0 as /ﬁag — k‘gal

Hence, we can think of the skew-symmetric matrix as

or, in the case of angular velocity
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5 Properties of Skew-symmetric Matrices

Properties of Skew-symmetric Matrices

Therefore (from above),
cct = Clwx]CT = [Cdx]

and (via distributive property)
Cl@x] = [Cux]C

noting both & and vector with which cross-product will be taken are assumed to be in the
same coordinate frame and thus both need to be recoordinatized. 17

Properties of Skew-symmetric Matrices

Cy = Q5,0
= [ g, xX]Cy
= [Cya o x]Cy
= Cyl@oyx]

= Cy

Ya __ (Oa a __ anyb
= Cy = Qg Cy = CyQy,

.18

Summary of Angular Velocity and Notation
Angular velocity can be

e described as a vector
— the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, & ¢,
— Wab = —Wha

e described as a skew-symmetric matrix 5, = [@ ¢, ¥]

— the skew-symmetric matrix is equivalent to the vector cross product when pre-
multiplying another vector

e related to the derivative of the rotation matrix
: b
Cy = Qq,Cy = Gy,
: b
Cf = 04,05 = —Ci Y,
.19




6 Propagation/Addition of Angular Velocity

Propagation/Addition of Angular Velocity

Consider the derivative of the composition of rotations C§ = CYC3.

d
d _ 0,1
40§ = Z0ic)

= C) =C{C;+CPC

= 05,08 =0y,CYC; + CYC,07,

= 0% =05,08[08]" + 090k [c8]”
= [@x] =[@0x]+[CI53,x%]

= & =45 +dh

= angular velocities (as vectors) add so long as resolved common coordinate system

7 Linear Position, Velocity and Acceleration

Linear Position

Consider the motion of a fixed point (origin of frame {2}) in a rotating frame (frame {1})

as seen from an inertial (frame

{0})

e frames {0} and {1} have the same origin
e frame {1} rotates (about a unit vector k) wrt frame {0}
e origin of frame {2} is fixed wrt frame {1}

Position:

Linear Velocity
Linear velocity:
Linear Acceleration
Linear acceleration:
s _ d
TOQ - dt
=d)

Transverse accel

Centripetal accel (w?r)
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Linear Position

We can get back to where we started .. motion (translation and rotation) between
frames and their derivatives.

21

Yo Translation (position) be-
tween frames {0} and {1}:

-0 = -0
Toa = To1T7T12

- 01
o1+ Cim 12

Linear Velocity
Linear velocity:

. d .
ng(t) = at (7“01 +C?7’%2)
=701 + P71, + CP7 1,

_ 0 0 01 051
=701 +Q01Ci7 12 + C17 15

_ -0 021 051
=To1 + [0 1 X]CTT 15 + C7775
_ 0 | ~0 01 051
=71 + &g X (C1712) + C1775

Linear Acceleration
Linear acceleration:

. d
=0 X9, =0 01 021
To2 = gy (7’01 + &g, x (C771,) JrCl’“u)
0 | 50 01 -0 “0.21 -0 051 0 051
= 7o +@o1 X (CY71) + Ty X (Clr12) +wor X (017"12) + O+ CiT 1o
S 7+ G X + Bk x @6 x ) + 26 x (CT) + i,
accel of {1}'s origin ) / .
from {0} in {0} Centripetal accel (w?r)

Coriolis accel (2w x v)

Transverse accel
The End accel of {2}'s origin
from {1} in {0}
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