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1 Review

Review
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• translation between
frames {a} and {c}:

~rac = ~rab + ~rbc

• written wrt/frame {a}

~r aac = ~r aab + ~r abc

= ~r aab + Cab ~r
b
bc
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2 Introduction to Velocity

Introduction to Velocity

• Given relationship for translation between moving (rotating and translating) frames

~r aac = ~r aab + Cab ~r
b
bc

what is linear velocity between frames?

~̇raac ≡ d

dt
~r aac

=
d

dt

(
~r aab + Cab ~r

b
bc

)
= ~̇raab + Ċab ~r

b
bc + Cab ~̇r

b
bc

• Why is Ċab 6= 0 in general? Recoordinatization of ~r bbc is time-dependent.
• Ċab is directly related to angular velocity between frames {a} and {b}.
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3 Derivative of Rotation Matrix and Angular Velocity - Approach I

First approach to d
dtC and angular velocity

Given a rotation matrix C , one of its properties is

[Cab ]TCab = Cab [Cab ]T = I

Taking the time-derivative of the “right-inverse” property

d

dt

(
Cab [Cab ]T

)
=

d

dt
I

⇒ Ċab [Cab ]T︸ ︷︷ ︸
Ωa

ab

+ Cab [Ċab ]T︸ ︷︷ ︸
(Ċab [Cab ]T )T︸ ︷︷ ︸

[Ωa
ab

]T

= 0

⇒ Ωaab + [Ωaab]
T = 0

⇒ Ωaab is skew-symmetric!
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First approach to d
dtC and angular velocity

Define this skew-symmetric matrix Ωaab

Ωaab = [~ω a
ab×] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Note Ωaab = Ċab [Cab ]T

⇒ Ċab = ΩaabC
a
b

is a means of finding derivative of rotation matrix provided we can further understand
Ωaab. .6
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First approach to d
dtC and angular velocity

Now for some insight into physical meaning of Ωaab.
• Consider a point p on a rigid body rotating with angular velocity ~ω = [ωx, ωy, ωz]

T =

θ̇~k = θ̇[kx, ky, kz]
T with ~k a unit vector.

~rp

p

~ω

~kθ̇
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First approach to d
dtC and angular velocity

~rp

p

~ω

~kθ̇
~vp

From mechanics, linear velocity ~vp of point is

~vp = ~ω × ~rp =

ωxωy
ωz

×
rxry
rz

 =

ωyrz − ωzryωzrx − ωxrz
ωxry − ωyrx

 =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


︸ ︷︷ ︸

?

rxry
rz
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First approach to d
dtC and angular velocity

~rp

p

~ω

~kθ̇
~vp

From mechanics, linear velocity ~vp of point is

~vp = ~ω × ~rp =

ωxωy
ωz

×
rxry
rz

 =

ωyrz − ωzryωzrx − ωxrz
ωxry − ωyrx

 =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


︸ ︷︷ ︸

Ω=[~ω×]

rxry
rz



⇒ Ω represents angular velocity and performs cross product
.9
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First approach to d
dtC and angular velocity

Now let’s add fixed frame {a} and rotating frame {b} attached to moving body such that
there is angular velocity ~ωab between them.

~rap

p

~ωab

~̇rap
{a}{b}

Start with position

~r aap = ~r aab︸︷︷︸
0

+Cab ~r
b
bp

and take derivative wrt time

~̇raap = Ċab︸︷︷︸
Ωa

abC
a
b

~r bbp + Cab ~̇r
b
bp︸ ︷︷ ︸

0

= ΩaabC
a
b ~r

b
bp

= Ωaab~r
a
bp = [~ω a

ab×]~r abp

from which it is observed (compare to
~vp = ~ω × ~rp) that Ωaab represents cross
product with angular velocity ~ω a

ab.
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4 Derivative of Rotation Matrix and Angular Velocity - Approach II

Second approach to d
dtC and angular velocity

• Another approach to developing derivative of rotation matrix and angular velocity is
based upon angle-axis representation of orientation and rotation matrix as exponen-
tial.

• This approach is included in notes.
.11

Second approach to d
dtC and angular velocity

• Since the relative and fixed axis rotations must be performed in a particular order,
their derivatives are somewhat challenging

• The angle-axis format, however, is readily differentiable as we can encode the 3
parameters by

~K ≡ ~k(t)θ(t) =

K1(t)
K2(t)
K3(t)


where θ = ‖ ~K‖

• Hence,
d

dt
~K(t) =

K̇1(t)

K̇2(t)

K̇3(t)
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Second approach to d
dtC and angular velocity

• For a sufficiently “small” time interval we can often consider the axis of rotation to be
≈ constant (i.e., ~k(t) = ~k)

d

dt
~K(t) ≈ d

dt

(
~kθ(t)

)
= ~kθ̇(t)

• This is referred to as the angular velocity (~ω(t)) or the so called “body reference”
angular velocity
Angular Velocity

~ω(t) ≡ ~kθ̇(t)
.13
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Second approach to d
dtC and angular velocity

• This definition of the angular velocity can also be related back to the rotation matrix.
Recalling that

Cab (t) = R~k a
ab,θ(t)

= eκ
a
abθ(t)

• Hence,

d

dt
Cab (t) =

d

dt
eκ

a
abθ(t)

=
∂eκ

a
abθ(t)

∂θ

dθ

dt

= κaabe
κa
abθ(t)θ̇(t)

=
(
κaabθ̇(t)

)
Cab (t)

⇒ Ċab (t) [Cab (t)]
T

= κaabθ̇(t)

.14

Second approach to d
dtC and angular velocity

Notice that

κaabθ̇(t) = Skew [kaab] θ̇(t)

= Skew
[
kaabθ̇(t)

]
= Skew [~ω a

ab] = Ωaab

Therefore,
Ċab (t) [Cab (t)]

T
= Ωaab

or

Ċab = ΩaabC
a
b

.15

Second approach to d
dtC and angular velocity

Note

κ~a =

 0 −k3 k2

k3 0 −k1

−k2 k1 0

a1

a2

a3

 =

k2a3 − k3a2

k3a1 − k1a3

k1a2 − k2a1

 = ~k × ~a

Hence, we can think of the skew-symmetric matrix as

κ = [~k×]

or, in the case of angular velocity
Ω = [~ω×]

.16
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5 Properties of Skew-symmetric Matrices

Properties of Skew-symmetric Matrices

CΩCT~b = C
[
~ω ×

(
CT~b

)]
= C~ω ×

(
CCT~b

)
= C~ω ×~b

= [C~ω×]~b

Therefore (from above),
CΩCT = C[~ω×]CT = [C~ω×]

and (via distributive property)
C[~ω×] = [C~ω×]C

noting both ~ω and vector with which cross-product will be taken are assumed to be in the
same coordinate frame and thus both need to be recoordinatized. .17

Properties of Skew-symmetric Matrices

Ċab = ΩaabC
a
b

= [~ω a
ab×]Cab

= [Cab ~ω
b
ab×]Cab

= Cab [~ω b
ab×]

= Cab Ωbab

⇒ Ċab = ΩaabC
a
b = Cab Ωbab

.18

Summary of Angular Velocity and Notation
Angular velocity can be
• described as a vector

– the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, ~ω c
ab

– ~ωab = −~ωba
• described as a skew-symmetric matrix Ωcab = [~ω c

ab×]

– the skew-symmetric matrix is equivalent to the vector cross product when pre-
multiplying another vector

• related to the derivative of the rotation matrix

Ċab = ΩaabC
a
b = Cab Ωbab

Ċab = −ΩabaC
a
b = −Cab Ωbba

.19
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6 Propagation/Addition of Angular Velocity

Propagation/Addition of Angular Velocity
Consider the derivative of the composition of rotations C0

2 = C0
1C

1
2 .

d
dtC

0
2 =

d

dt
C0

1C
1
2

⇒ Ċ0
2 = Ċ0

1C
1
2 + C0

1 Ċ
1
2

⇒ Ω0
02C

0
2 = Ω0

01C
0
1C

1
2 + C0

1C
1
2Ω2

12

⇒ Ω0
02 = Ω0

01C
0
2

[
C0

2

]T
+ C0

2Ω2
12

[
C0

2

]T
⇒ [~ω 0

02×] = [~ω 0
01×] + [C0

2~ω
2
12×]

⇒ ~ω 0
02 = ~ω 0

01 + ~ω 0
12

⇒ angular velocities (as vectors) add so long as resolved common coordinate system .20

7 Linear Position, Velocity and Acceleration

Linear Position
Consider the motion of a fixed point (origin of frame {2}) in a rotating frame (frame {1})

as seen from an inertial (frame {0})
• frames {0} and {1} have the same origin
• frame {1} rotates (about a unit vector ~k) wrt frame {0}
• origin of frame {2} is fixed wrt frame {1}

Position:

~r 0
02(t) = ~r 0

01(t)

~0

+ ~r 0
12(t)

= C0
1 (t)~r 1

12

.21

Linear Velocity
Linear velocity:

~̇r 0
02(t) =

d

dt
C0

1 (t)~r 1
12

= Ċ0
1 (t)~r 1

12

= [~ω 0
01×]C0

1 (t)~r 1
12

= ~ω 0
01 × ~r 0

12(t)

.22

Linear Acceleration
Linear acceleration:

~̈r 0
02 =

d

dt

(
~ω 0

01 ×
(
C0

1 (t)~r 1
12

))
= ~̇ω 0

01 ×
(
C0

1 (t)~r 1
12

)
+ ~ω 0

01 ×
(
Ċ0

1 (t)~r 1
12

)
= ~̇ω 0

01 × ~r 0
12(t) + ~ω 0

01 ×
(
~ω 0

01 × ~r 0
12(t)

)
Transverse accel Centripetal accel (ω2r)

.23
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Linear Position
We can get back to where we started ... motion (translation and rotation) between

frames and their derivatives.

x1

y1

z1

x0

y0

z0

x2

y2

z2

~r01

~r12

~r02

Translation (position) be-
tween frames {0} and {1}:

~r 0
02 = ~r 0

01 + ~r 0
12

= ~r 0
01 + C0

1~r
1
12

.24

Linear Velocity
Linear velocity:

~̇r 0
02(t) =

d

dt

(
~r 0

01 + C0
1~r

1
12

)
= ~̇r0

01 + Ċ0
1~r

1
12 + C0

1 ~̇r
1
12

= ~̇r0
01 + Ω0

01C
0
1~r

1
12 + C0

1 ~̇r
1
12

= ~̇r0
01 + [~ω 0

01×]C0
1~r

1
12 + C0

1 ~̇r
1
12

= ~̇r0
01 + ~ω 0

01 × (C0
1~r

1
12) + C0

1 ~̇r
1
12

.25

Linear Acceleration
Linear acceleration:

~̈r 0
02 =

d

dt

(
~̇r0

01 + ~ω 0
01 ×

(
C0

1~r
1
12

)
+ C0

1 ~̇r
1
12

)
= ~̈r0

01 + ~̇ω 0
01 ×

(
C0

1~r
1
12

)
+ ~ω 0

01 ×
(
Ċ0

1~r
1
12

)
+ ~ω 0

01 ×
(
C0

1 ~̇r
1
12

)
+ Ċ0

1 ~̇r
1
12 + C0

1 ~̈r
1
12

= ~̈r0
01 + ~̇ω 0

01 × ~r 0
12(t) + ~ω 0

01 ×
(
~ω 0

01 × ~r 0
12(t)

)
+ 2~ω 0

01 ×
(
C0

1 ~̇r
1
12

)
+ C0

1 ~̈r
1
12

accel of {1}’s origin
from {0} in {0}

Transverse accel

Centripetal accel (ω2r)
Coriolis accel (2ω × v)

accel of {2}’s origin
from {1} in {0}

.26

The End .27
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