EE 565: Position, Navigation and Timing Navigation Mathematics: Angular and Linear Velocity

Kevin Wedeward Aly El-Osery

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity, Prescott, Arizona, USA

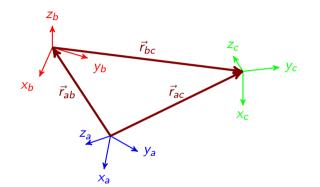
February 4, 2020

1 Review

Introduction to Velocity

- Oerivative of Rotation Matrix and Angular Velocity Approach I
- Oerivative of Rotation Matrix and Angular Velocity Approach II
- Properties of Skew-symmetric Matrices
- 6 Propagation/Addition of Angular Velocity
- Iinear Position, Velocity and Acceleration

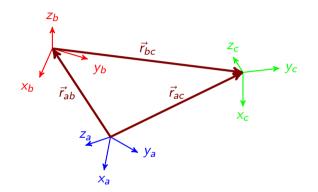
Review



• translation between frames {*a*} and {*c*}:

$$\vec{r}_{ac} = \vec{r}_{ab} + \vec{r}_{bc}$$

Review



• translation between frames {*a*} and {*c*}:

$$\vec{r}_{ac} = \vec{r}_{ab} + \vec{r}_{bc}$$

• written *wrt*/frame {*a*}

$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + \vec{r}_{bc}^{a}$$
$$= \vec{r}_{ab}^{a} + C_{b}^{a}\vec{r}_{bc}^{b}$$

$$\vec{r}_{ac}^{a}=\vec{r}_{ab}^{a}+C_{b}^{a}\vec{r}_{bc}^{b}$$

what is linear velocity between frames?

$$ec{r}^{a}_{ac}=ec{r}^{a}_{ab}+C^{a}_{b}ec{r}^{b}_{bc}$$

what is linear velocity between frames?

$$\vec{r}^{a}_{ac} \equiv \frac{d}{dt} \vec{r}^{a}_{ac}$$

$$= \frac{d}{dt} \left(\vec{r}^{a}_{ab} + C^{a}_{b} \vec{r}^{b}_{bc} \right)$$

$$= \vec{r}^{a}_{ab} + C^{a}_{b} \vec{r}^{b}_{bc} + C^{a}_{b} \vec{r}^{b}_{bc}$$

• Why is $\dot{C}_b^a \neq 0$ in general?

$$ec{r}^{a}_{ac}=ec{r}^{a}_{ab}+C^{a}_{b}ec{r}^{b}_{bc}$$

what is linear velocity between frames?

• Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of \vec{r}_{bc}^{b} is time-dependent.

$$\vec{r}^{\,a}_{\,ac}=\vec{r}^{\,a}_{\,ab}+C^a_b\vec{r}^{\,b}_{\,bc}$$

what is linear velocity between frames?

- Why is $\dot{C}_b^a \neq 0$ in general? Recoordinatization of \vec{r}_{bc}^{b} is time-dependent.
- \dot{C}_b^a is directly related to angular velocity between frames $\{a\}$ and $\{b\}$.

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_{b}^{a}[C_{b}^{a}]^{T}\right) = \frac{d}{dt}\mathcal{I}$$

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\dot{C}_{b}^{a}[C_{b}^{a}]^{T})^{T}} = 0$$

 Review
 Intro to Vel
 $\frac{d}{dt}$ C and ω - I
 $\frac{d}{dt}$ C and ω - II
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 0
 0
 000
 000
 000
 000
 0000

 Kevin Wedeward, Aly El-Osery (NMT)
 EE 565: Position, Navigation and Timing
 February 4, 2020 5 / 19

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\underline{\dot{C}}_{b}^{a}[C_{b}^{a}]^{T})^{T}} = 0$$
$$\stackrel{\Rightarrow \Omega_{ab}^{a}}{\to} + [\Omega_{ab}^{a}]^{T} = 0$$

 Review
 Intro to Vel
 $\frac{d}{dt}C$ and ω - I
 $\frac{d}{dt}C$ and ω - II
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 0
 0
 000
 000
 000
 000
 0000
 0000

 Kevin Wedeward, Aly El-Osery (NMT)
 EE 565: Position, Navigation and Timing
 February 4, 2020 5 / 19

Given a rotation matrix C, one of its properties is

$$[C_b^a]^T C_b^a = C_b^a [C_b^a]^T = \mathcal{I}$$

Taking the time-derivative of the "right-inverse" property

$$\frac{d}{dt}\left(C_b^a[C_b^a]^T\right) = \frac{d}{dt}\mathcal{I}$$

$$\Rightarrow \underbrace{\dot{C}_{b}^{a}[C_{b}^{a}]^{T}}_{\Omega_{ab}^{a}} + \underbrace{\underbrace{C_{b}^{a}[\dot{C}_{b}^{a}]^{T}}_{(\dot{C}_{b}^{a}[C_{b}^{a}]^{T})^{T}} = 0$$

$$\Rightarrow \Omega^a_{ab} + [\Omega^a_{ab}]^T = 0$$

$\Rightarrow \Omega^a_{ab}$ is skew-symmetric!

 Review
 Intro to Vel
 d/dt C and ω - I
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 0
 0
 000
 000
 000
 0000
 0000

 Kevin Wedeward, Aly EI-Osery (NMT)
 EE 565: Position, Navigation and Timing
 February 4, 2020
 5 / 19

Define this skew-symmetric matrix Ω_{ab}^{a}

$$\Omega^{a}_{ab} = \begin{bmatrix} \vec{\omega} \ ^{a}_{ab} \times \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

Define this skew-symmetric matrix Ω_{ab}^{a}

$$\Omega^{a}_{ab} = \begin{bmatrix} \vec{\omega} \ ^{a}_{ab} \times \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}$$

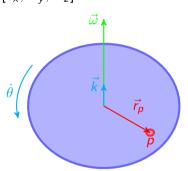
Note
$$\Omega^a_{ab} = \dot{C}^a_b [C^a_b]^T$$

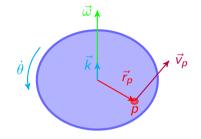
 $\Rightarrow \dot{C}^a_b = \Omega^a_{ab} C^a_b$

is a means of finding derivative of rotation matrix provided we can further understand Ω^a_{ab} .

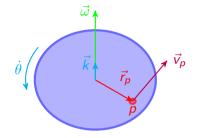
Now for some insight into physical meaning of Ω^a_{ab} .

• Consider a point p on a rigid body rotating with angular velocity $\vec{\omega} = [\omega_x, \omega_v, \omega_z]^T = \dot{\theta}\vec{k} = \dot{\theta}[k_x, k_v, k_z]^T$ with \vec{k} a unit vector.





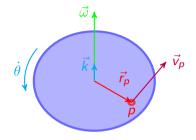
From mechanics, linear velocity $\vec{v_p}$ of point is



From mechanics, linear velocity $\vec{v_p}$ of point is

$$\vec{v}_{p} = \vec{\omega} \times \vec{r}_{p} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} \times \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} r_{z} - \omega_{z} r_{y} \\ \omega_{z} r_{x} - \omega_{x} r_{z} \\ \omega_{x} r_{y} - \omega_{y} r_{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}}_{?} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

ReviewIntro to Vel $\frac{d}{dt}C$ and ω - I $\frac{d}{dt}C$ and ω - IIProperties of SS MatricesAdd Angular VelocityPos, Vel & Accel00000000000000000000000Kevin Wedeward, Aly El-Osery (NMT)EE 565: Position, Navigation and TimingFebruary 4, 2020 8 / 19



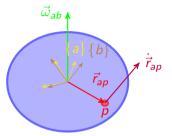
From mechanics, linear velocity $\vec{v_p}$ of point is

$$\vec{v_{p}} = \vec{\omega} \times \vec{r_{p}} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix} \times \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} r_{z} - \omega_{z} r_{y} \\ \omega_{z} r_{x} - \omega_{x} r_{z} \\ \omega_{x} r_{y} - \omega_{y} r_{x} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}}_{\Omega = [\vec{\omega} \times]} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

 $\Rightarrow \Omega$ represents angular velocity and performs cross product

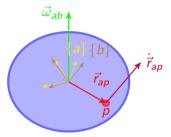
		<u>d</u> /dt C and ω - I 0000●0					
Kevin Wedeward, Aly El-Osery (NMT)			EE 565: Position, Navigation and Timing		February 4, 2020		9 / 19

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.



Review 0	Intro to Vel O	<u>d</u> C and ω - Ι 00000●	$\frac{d}{dt}C$ and ω – II	Properties of SS Matrices	Add Angular Velocity O	Pos, Vel 0000	l & Accel
Kevin Wedeward, Aly El-Osery (NMT)			EE 565: Position,	Navigation and Timing	Februa	ary 4, 2020	10 / 19

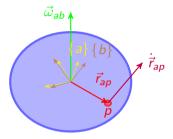
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.



Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a}\vec{r}_{bp}^{b}$$

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.



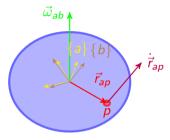
and take derivative wrt time

$$\begin{split} \dot{\vec{r}}^{a}_{ap} &= \underbrace{\dot{C}^{a}_{b}}_{\Omega^{a}_{ab}C^{a}_{b}} \vec{r}^{b}_{bp} + \underbrace{C^{a}_{b} \dot{\vec{r}}^{b}_{bp}}_{0} \\ &= \Omega^{a}_{ab}C^{a}_{b} \vec{r}^{b}_{bp} \\ &= \Omega^{a}_{ab} \vec{r}^{a}_{bp} = [\vec{\omega}^{a}_{ab} \times] \vec{r}^{a}_{bp} \end{split}$$

Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a}\vec{r}_{bp}^{b}$$

Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{ab}$ between them.



Start with position

$$\vec{r}_{ap}^{a} = \underbrace{\vec{r}_{ab}^{a}}_{0} + C_{b}^{a} \vec{r}_{bp}^{b}$$

and take derivative wrt time

$$\begin{array}{ll} \vec{r}^{a}_{ap} & = & \underbrace{\dot{C}^{a}_{b}}_{\Omega^{a}_{ab}C^{a}_{b}} \vec{r}^{\,b}_{\,bp} + \underbrace{C^{a}_{b} \vec{r}^{b}_{bp}}_{0} \\ & = & \Omega^{a}_{ab}C^{a}_{b} \vec{r}^{\,b}_{\,bp} \\ & = & \Omega^{a}_{ab} \vec{r}^{\,a}_{\,bp} = [\vec{\omega}^{\,a}_{\,ab} \times] \vec{r}^{\,a}_{\,bp} \end{array}$$

from which it is observed (compare to $\vec{v_p} = \vec{\omega} \times \vec{r_p}$) that Ω^a_{ab} represents cross product with angular velocity $\vec{\omega}^a_{ab}$.

- Another approach to developing derivative of rotation matrix and angular velocity is based upon angle-axis representation of orientation and rotation matrix as exponential.
- This approach is included in notes.

$$C\Omega C^{\mathsf{T}} \vec{b} = C \left[\vec{\omega} \times \left(C^{\mathsf{T}} \vec{b} \right) \right]$$
$$= C \vec{\omega} \times \left(C C^{\mathsf{T}} \vec{b} \right)$$
$$= C \vec{\omega} \times \vec{b}$$
$$= [C \vec{\omega} \times] \vec{b}$$

Therefore (from above),

$$C\Omega C^{\mathsf{T}} = C[\vec{\omega} \times] C^{\mathsf{T}} = [C\vec{\omega} \times]$$

and (via distributive property)

$$C[\vec{\omega} \times] = [C\vec{\omega} \times]C$$

noting both $\vec{\omega}$ and vector with which cross-product will be taken are assumed to be in the same coordinate frame and thus both need to be recoordinatized.

				Properties of SS Matrices ●00			
Kevin Wedeward, Aly El-Osery (NMT)			EE 565: Position, Navigation and Timing		February 4, 2020		12 / 19

Properties of Skew-symmetric Matrices

$$\begin{split} \dot{C}_b^a &= \Omega^a_{ab} C^a_b \\ &= [\vec{\omega}^{\,a}_{\,ab} \times] C^a_b \\ &= [C^a_b \vec{\omega}^{\,b}_{\,ab} \times] C^a_b \\ &= C^a_b [\vec{\omega}^{\,b}_{\,ab} \times] \\ &= C^a_b [\vec{\omega}^{\,b}_{\,ab} \times] \\ &= C^a_b \Omega^b_{ab} \end{split}$$

$$\Rightarrow \dot{C}^a_b = \Omega^a_{ab} C^a_b = C^a_b \Omega^b_{ab}$$

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame wrt the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$

•
$$\vec{\omega}_{ab} = -\vec{\omega}_{ba}$$

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame wrt the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$
 - $\vec{\omega}_{ab} = -\vec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega_{ab}^{c} = [\vec{\omega} \, {}^{c}_{ab} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector

Angular velocity can be

- described as a vector
 - the angular velocity of the *b*-frame wrt the *a*-frame resolved in the *c*-frame, $\vec{\omega}_{ab}^{c}$
 - $\vec{\omega}_{ab} = -\vec{\omega}_{ba}$
- described as a skew-symmetric matrix $\Omega^{c}_{ab} = [\vec{\omega} \, {}^{c}_{ab} \times]$
 - the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector
- related to the derivative of the rotation matrix

$$\begin{split} \dot{C}^a_b &= \Omega^a_{ab} C^a_b = C^a_b \Omega^b_{ab} \\ \dot{C}^a_b &= -\Omega^a_{ba} C^a_b = -C^a_b \Omega^b_{ba} \end{split}$$

ReviewIntro to Vel $\frac{d}{dt}C$ and ω - IProperties of SS MatricesAdd Angular VelocityPos, Vel & Accel \circ \circ <

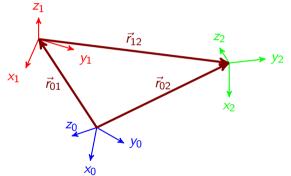
Consider the derivative of the composition of rotations $C_2^0 = C_1^0 C_2^1$.

$$\begin{aligned} \frac{d}{dt}C_{2}^{0} &= \frac{d}{dt}C_{1}^{0}C_{2}^{1} \\ \Rightarrow & \dot{C}_{2}^{0} &= \dot{C}_{1}^{0}C_{2}^{1} + C_{1}^{0}\dot{C}_{2}^{1} \\ \Rightarrow & \Omega_{02}^{0}C_{2}^{0} &= \Omega_{01}^{0}C_{1}^{0}C_{2}^{1} + C_{1}^{0}C_{2}^{1}\Omega_{12}^{2} \\ \Rightarrow & \Omega_{02}^{0} &= \Omega_{01}^{0}C_{2}^{0}\left[C_{2}^{0}\right]^{T} + C_{2}^{0}\Omega_{12}^{2}\left[C_{2}^{0}\right]^{T} \\ \Rightarrow & \left[\vec{\omega}_{02}^{0}\times\right] &= \left[\vec{\omega}_{01}^{0}\times\right] + \left[C_{2}^{0}\vec{\omega}_{12}^{2}\times\right] \\ \Rightarrow & \vec{\omega}_{02}^{0} &= \vec{\omega}_{01}^{0} + \vec{\omega}_{12}^{0} \end{aligned}$$

 \Rightarrow angular velocities (as vectors) add so long as resolved common coordinate system

Linear Position

We can get back to where we started ... motion (translation and rotation) between frames and their derivatives.



Translation (position) between frames {0} and {1}:

$$\vec{r}_{02}^{0} = \vec{r}_{01}^{0} + \vec{r}_{12}^{0} \\ = \vec{r}_{01}^{0} + C_{1}^{0}\vec{r}_{12}^{1}$$

Review 0	Intro to Vel O	<u>d</u> C and ω - I 000000			Add Angular Velocity O	Pos, Vel ●000	Pos, Vel & Accel ●000	
Kevin Wedeward, Aly El-Osery (NMT)			EE 565: Position,	Navigation and Timing	Februa	ry 4, 2020	16 / 19	

Linear velocity:

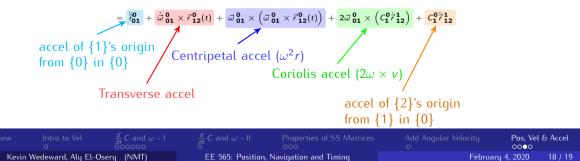
$$\begin{split} \dot{\vec{r}}_{02}^{0}(t) &= \frac{d}{dt} \left(\vec{r}_{01}^{0} + C_{1}^{0} \vec{r}_{12}^{1} \right) \\ &= \dot{\vec{r}}_{01}^{0} + \dot{C}_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \Omega_{01}^{0} C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + [\vec{\omega}_{01}^{0} \times] C_{1}^{0} \vec{r}_{12}^{1} + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\ &= \dot{\vec{r}}_{01}^{0} + \vec{\omega}_{01}^{0} \times (C_{1}^{0} \vec{r}_{12}^{1}) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \end{split}$$

 Review
 Intro to Vel
 $\frac{d}{dt}$ C and ω - I
 Properties of SS Matrices
 Add Angular Velocity
 Pos, Vel & Accel

 \circ \circ

Linear acceleration:

$$\begin{split} \ddot{r}_{02}^{0} &= \frac{d}{dt} \left(\dot{\vec{r}_{01}} + \vec{\omega}_{01}^{0} \times \left(C_{1}^{0} \vec{r}_{12}^{1} \right) + C_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) \\ &= \ddot{r}_{01}^{0} + \dot{\vec{\omega}}_{01}^{0} \times \left(C_{1}^{0} \vec{r}_{12}^{1} \right) + \vec{\omega}_{01}^{0} \times \left(\dot{c}_{1}^{0} \vec{r}_{12}^{1} \right) + \vec{\omega}_{01}^{0} \times \left(c_{1}^{0} \dot{\vec{r}}_{12}^{1} \right) + \dot{c}_{1}^{0} \dot{\vec{r}}_{12}^{1} + C_{1}^{0} \ddot{\vec{r}}_{12}^{1} \end{split}$$



Review
oIntro to Vel $\frac{d}{dt}C$ and ω - I $\frac{d}{dt}C$ and ω - IIProperties of SS Matrices
ocoAdd Angular VelocityPos, Vel & Accel
ocoKevin Wedeward, Aly El-Osery
(NMT)(NMT)EE 565: Position, Navigation and TimingFebruary 4, 202019 / 19