EE 565: Position, Navigation and Timing Gyro and Accel Noise Characteristics

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

March 11, 2020

Gyro Noise Characteristics	s Accel Noise Characteristics	Using PSD and Allan Va	
Wedeward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	1 / 15

• Accelerometer model

$$\tilde{\vec{f}}_{ib}^{\ b} = \vec{f}_{ib}^{\ b} + \Delta \vec{f}_{ib}^{\ b} = \vec{b}_{a} + (\mathcal{I} + M_{a})\vec{f}_{ib}^{\ b} + \vec{w}_{a}$$
(1)

Gyro Model

$$\tilde{\vec{\omega}}_{ib}^{\ b} = \vec{\omega}_{ib}^{\ b} + \Delta \vec{\omega}_{ib}^{\ b} = \vec{b}_g + (\mathcal{I} + M_g) \vec{\omega}_{ib}^{\ b} + G_g \vec{f}_{ib}^{\ b} + \vec{w}_g$$
(2)

- Typically, each measures along a signle sense axis requiring three of each to measure the 3-tupple vector
- Bias errors are composite of fixed bias, bias instability, and bias stability

$$b = b_{FB} + b_{BI} + b_{BS}$$

Inertial Sensors Errors •				
Aly El-Osery, Kevin We	deward (NMT) E	E 565: Position, Navigation and Timing	March 11, 2020	2 / 15

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

	Gyro Noise Characteri ⊙0000	tics Accel Noise Characteristics		
Aly El-Osery, Kevin Wed	eward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	3 / 15

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Error Growth

Linearly growing error in the angle domain of ϵt .

	Gyro Noise Characte ●0000	ristics Accel Noise Characteristics 000		
Aly El-Osery, Kevin Wede	eward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	3 / 15

A constant in the output of a gyro in the absence of rotation, in $^{\circ}/h$.

Error Growth

Linearly growing error in the angle domain of ϵt .

Model

Random constant.

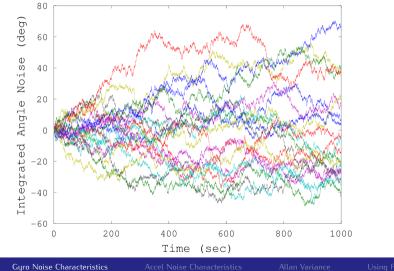
	Gyro Noise Characte •0000	istics Accel Noise Characteristics 000		
Aly El-Osery, Kevin Wede	ward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	3 / 15

Assuming the rectangular rule is used for integration, a sampling period of T_s and a time span of nT_s .

$$\int_0^t \epsilon(\tau) d\tau = T_s \sum_{i=1}^n \epsilon(t_i)$$
(3)

since $\mathbb{E}[\epsilon(t_i)] = 0$ and $Cov(\epsilon(t_i), \epsilon(t_j)) = 0$ for all $i \neq j$, $Var[\epsilon(t_i)] = \sigma^2$

$$\mathbb{E}\left[\int_{0}^{t} \epsilon(\tau) d\tau\right] = T_{s} n \mathbb{E}[\epsilon(t_{i})] = 0, \forall i$$
(4)


$$Var\left[\int_{0}^{t} \epsilon(\tau) d\tau\right] = T_{s}^{2} n Var[\epsilon(t_{i})] = T_{s} t \sigma^{2}, \forall i$$
(5)

 Inertial Sensors Errors
 Gyro Noise Characteristics
 Accel Noise Characteristics
 Allan Variance
 Using PSD and Allan Variance

 0
 0
 000
 000
 000
 000
 000

 Aly EL-Osery, Kevin Wedeward
 (NMT)
 EE 565: Position, Navigation and Timing
 March 11, 2020
 4 / 15

Aly El-Osery, Kevin Wedeward (NMT)

00000

Accel Noise Characteristics 000 <u>EE 565: Position, Navigat</u>ion and Timing Allan va OO Using PSD and Allan Variance 000 March 11, 2020 5 / 19

Angle Random Walk (°/ \sqrt{h})

(8)

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = rac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$

Inertial Sensors Errors o	Gyro Noise Characteristic 000●0	s Accel Noise Characteristics	Allan Variance 00	Using PSD and Allan V 000	/ariance
Aly El-Osery, Kevin We	edeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	6 / 15

Angle Random Walk (°/ \sqrt{h})

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Error Growth

ARW times root of the time in hours.

Inertial Sensors Errors o	Gyro Noise Character 00000	istics Accel Noise Characteristics	Allan Variance 00	Using PSD and Allan V 000	ariance/
Aly El-Osery, Kevin We	deward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	6 / 15

Angle Random Walk (° $/\sqrt{h}$)

Integrated noise resulted in zero-mean random walk with standard deviation that grows with time as

$$\sigma_{\theta} = \sigma \sqrt{T_s t} \tag{6}$$

We define ARW as

$$ARW = \sigma_{\theta}(1) \qquad (^{\circ}/\sqrt{h}) \tag{7}$$

In terms of PSD

$$ARW(^{\circ}/\sqrt{h}) = \frac{1}{60}\sqrt{PSD((^{\circ}/h)^2/Hz)}$$
(8)

Error Growth

ARW times root of the time in hours.

Model

White noise.

 Inertial Sensors Errors
 Gyro Noise Characteristics

 o
 ooo●o

 Alu El-Oseru, Kevin Wedeward
 (NMT)

Accel Noise Characteristics 000

EE 565: Position, Navigation and Timing

Allan Varia 00 Using PSD and Allan Variance 000

March 11, 2020 6 / 15

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

	Gyro Noise Characteristi	cs Accel Noise Characteristics	Using PSD and Allan V	
	00000			
Aly El-Osery, Kevin W	edeward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	7 / 15

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

Error Growth

Variance grows over time.

Inertial Sensors Errors o	Gyro Noise Characteris 0000●	tics Accel Noise Characteristics 000	Allan Variance 00	Using PSD and Allan Vari	iance
Aly El-Osery, Kevin Wed	leward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	7 / 15

- Due to flicker noise with spectrum 1/F.
- Results in random variation in the bias.
- Normally more noticeable at low frequencies.
- At high frequencies, white noise is more dominant.

Error Growth

Variance grows over time.

Model

First order Gauss-Markov.

	Gyro Noise Characteris 0000●	ics Accel Noise Characteristics 000	Allan Variance 00		
Aly El-Osery, Kevin We	edeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	7 / 15

A constant deviation in the accelerometer from the true value, in m/s^2 .

		ristics Accel Noise Characteristics		
Aly El-Osery, Kevin Wede	ward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	8 / 15

A constant deviation in the accelerometer from the true value, in m/s^2 .

Error growth

Double integrating a constant bias error of ϵ results in a quadratically growing error in position of $\epsilon t^2/2$.

		istics Accel Noise Characteristics		
Aly El-Osery, Kevin Wede	ward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	8 / 15

A constant deviation in the accelerometer from the true value, in m/s^2 .

Error growth

Double integrating a constant bias error of ϵ results in a quadratically growing error in position of $\epsilon t^2/2$.

Model

Random constant.

Accel Noise Characteristics Accel Noise Characteristics Allan Variance Using PSD and Allan Variance OO Aly El-Osery, Kevin Wedeward (NMT) EE 565: Position, Navigation and Timing March 11, 2020 8 / 15

Velocity Random Walk $(m/s/\sqrt{h})$

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

		ristics Accel Noise Characteristics		
Aly El-Osery, Kevin W	edeward (NMT)	EE 565: Position, Navigation and Timing	March 11, 2020	9 / 15

Velocity Random Walk $(m/s/\sqrt{h})$

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

Error Growth

Computing the standard deviation results in

$$\sigma_{p} \approx \sigma t^{(3/2)} \sqrt{\frac{T_{s}}{3}} \tag{10}$$

Inertial Sensors Errors	Gyro Noise Characteris	tics Accel Noise Characteristics	Allan Variance	Using PSD and Allan V	/ariance
o	00000	0●0	00	000	
Aly El-Osery, Kevin	Wedeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	9 / 15

Velocity Random Walk $(m/s/\sqrt{h})$

Integrating accelerometer output containing white noise results in velocity random walk (VRW) $(m/s/\sqrt{h})$. Similar to development of ARW, if we double integrate white noise we get

$$\iint_{0}^{t} \epsilon(\tau) d\tau d\tau = T_{s,sensor}^{2} \sum_{i=1}^{n} \sum_{j=1}^{i} \epsilon(t_{j})$$
(9)

Error Growth

Computing the standard deviation results in

$$\sigma_{
ho}pprox\sigma t^{(3/2)}\sqrt{rac{T_s}{3}}$$

(10)

Model

White noise.

Inertial Sensors Errors	Gyro Noise Characteri	stics Accel Noise Characteristics	Allan Variance	Using PSD and Allan V	
o	00000	0●0	00	000	
Aly El-Osery, Kevin Weo	deward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	9 / 15

Error growth

Grows as $t^{5/2}$.

Gyro Noise Characterist

Accel Noise Characteristics 00● EE 565: Position, Navigation and Timing

Allan Vari 00 Using PSD and Allan Variance

Aly El-Osery, Kevin Wedeward (NMT)

March 11, 2020 10 / 15

Error growth

Grows as $t^{5/2}$.

Model

First order Gauss-Markov.

 Inertial Sensors Errors
 Gyro Noise Characteristics
 Accel Noise Characteristics
 Allan Variance
 Using PSD and Allan Variance

 0
 0000
 00
 00
 00
 000

 Aly EI-Osery, Kevin Wedeward
 (NMT)
 EE 565: Position, Navigation and Timing
 March 11, 2020
 10 / 15

It is a time domain analysis techniques designed originally for characterizing noise in clocks. It was first proposed by David Allan in 1966.

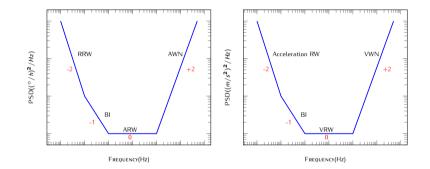
Inertial Sensors Errors	Gyro Noise Characteris	stics Accel Noise Characteristics	Allan Variance	Using PSD and Allan Va	riance
o	00000	000	●0	000	
Alu El-Oseru, Kevin W	edeward (NMT)	FE 565: Position, Navigation and Timing		March 11, 2020	11 / 15

Allan Variance Computation

- Divide your N-point data sequence into adjacent windows of size $n = 1, 2, 4, 8, ..., M \le N/2$.
- If a provide the sequence of the sequence o

$$y_j(n) = \frac{x_{nj} + x_{nj+1} + \dots + x_{nj+n-1}}{n}, \quad j = 0, 1, \dots, \left[\frac{N}{n}\right] - 1$$
 (11)

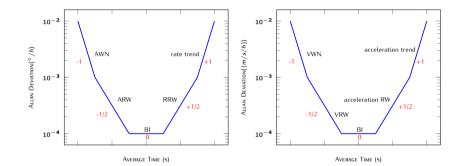
Plot log-log of the Allan deviation which is square root of


$$\sigma_{Allan}^{2}(nT_{s}) = \frac{1}{2(N-1)} \sum_{j=1}^{N-1} (y_{j} - y_{j-1})^{2}$$
(12)

versus averaging time $\tau = nT_s$

			Allan Variance ⊙●		
Aly El-Osery, Kevin We	edeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	12 / 15

One-sided PSD - Typical Slopes



Inertial Sensors Errors	Gyro Noise Characteristic	s Accel Noise Characteristics	Allan Variance	Using PSD and Allan	Variance
o	00000	000	00	●00	
Aly El-Osery, Kevin V	Vedeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	13 / 15

Allan Deviation - Typical Slopes

Inertial Sensors Errors o	Gyro Noise Characteristic 00000	s Accel Noise Characteristics 000	Allan Variance 00	Using PSD and Allan V	Variance
Aly El-Osery, Kevin V	Vedeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	14 / 15

Noise Type	AV $\sigma^2(\tau)$	PSD (2-sided)
Quantization Noise	$3\frac{lpha^2}{ au^2}$	$(2\pi f)^2 \alpha^2 T_s$
Angle/Velocity Random Walk	$\frac{\alpha^2}{\tau}$	α^2
Flicker Noise	$\frac{2\alpha^2\ln(2)}{\pi}$	$\frac{\alpha^2}{2\pi f}$
Angular Rate/Accel Random Walk	$\frac{\alpha^2 \tau}{3}$	$\frac{\alpha^2}{(2\pi f)^2}$
Ramp Noise	$\frac{\alpha^2 \tau^2}{2}$	$\frac{\alpha^2}{(2\pi f)^3}$

Inertial Sensors Errors	Gyro Noise Characteristi	cs Accel Noise Characteristics	Allan Variance	Using PSD and Allan `	Variance
o	00000	000	00	oo●	
Aly El-Osery, Kevin V	Vedeward (NMT)	EE 565: Position, Navigation and Timing		March 11, 2020	15 / 15