
EE 231 Fall 2011

 1

EE 231 Lab 3

Decoders and Multiplexers

Decoders and multiplexers are important combinational circuits in many logic designs.

Decoders convert n inputs to a maximum of unique 2n outputs. A special case is the BCD-

to-seven-segment decoder, where a four-bit decimal digit (represented in BCD) is decoded

into the corresponding seven-segment code used as an input to the seven-segment display

(Figure 1).

Figure 1: 7-Segment Display

1. Prelab

1.1. Wire-wrap the two 7-segment displays along with the pin header needed on a perf

board. Schematics of MAN74 7-segment display.

1.2. Fill in the truth table for the BCD-to-7-segment decoder shown in Table 1, e.g., if the

input is 0011, LEDs a, b, c, d, and g should be on while LEDs f and e will be off (see

Figure 1 for reference). For inputs 0xA through 0xF, naturally they don’t

correspond to any number in the 0-9 range, therefore output the corresponding hex

value instead, i.e., for 0xA the display should show the letter A.

A simple computer has several main blocks, e.g.:

� Arithmetic Logic Unit (ALU): performs arithmetic operations on numbers.

� Memory: where the program is stored.

� Multiplexers: select which piece of information to be passed on.

� Decoders: to determine, based on the input, whether to read from memory or

input/output lines.

EE 231 Fall 2011

 2

� Computer Control Unit: outputs the control signals that direct the operation of

the rest of the computer.

Even though we are not building a computer, this information give you some

perspective on the different components that you will be building and what they may be

used for.

In this lab we will focus on the multiplexer that chooses either a reset address

(RST_ADDR), program counter (PC), memory address register (MAR), or index register

X (IRX). These signals are used to determine the information required to enter the

arithmetic logic unit (ALU) component of the computer.

1.3. Design a multiplexer with ADDR_SEL as the select signal, RST_ADDR (we will use

address 0xFF), P, MAR, and X as 8-bit input signals.

1.4. Design a Verilog program to implement this multiplexer.

Digit Binary a b c d e f g

0 0000

1 0001

2 0010

3 0011 1 1 1 1 0 0 1

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Table 1: Truth Table for 7-Segment-Display Decoder

(“1” LED is on, and “0” it is off)

2. Lab

2.1. Place a block of 8 DIP switches on your breadboard, Figure 2.

2.2. Connect each lead on one side to VCC. You can use an external power or the

VCC_SYS provided on your board.

EE 231 Fall 2011

 3

2.3. Put a 1k resistor from each of the leads on the other side to ground. Also on this

side, place a row of 8 pin headers so that you have outputs from all of these

switches.

Figure 2: Dip Switches

2.4. In order to be able to connect to the board you will need to assign pins to the

proper expansion header on your board. The easiest to use is the GPIO-0 at the top

of the board (Figure 3).

Figure 3: DE0-NANO Development Board

EE 231 Fall 2011

 4

2.5. Use Figure 4 for the pin labels for the GPIO-0. Table 2 shows the pins assignments

for the GPIO-0.

Figure 4: Pin Distribution of the GPIO-0 Expansion Header

GPIO-0 Left Column CPLD Pin # GPIO-0 Right Column CPLD Pin #

1 A8 2 D3

3 B8 4 C3

5 A2 6 A3

7 B3 8 B4

9 A4 10 B5

11 -- 12 --

13 A5 14 D5

15 B6 16 A6

17 B7 18 D6

19 A7 20 C6

21 C8 22 E6

23 E7 24 D8

25 E8 26 F8

27 F9 28 E9

29 -- 30 --

31 C9 32 D9

33 E11 34 E10

35 C11 36 B11

37 A12 38 D11

39 D12 40 B12

Table 2: Pin Assignments for GPIO-0

EE 231 Fall 2011

 5

2.6. Now that the hardware is setup, design the BCD-to-seven-segment decoder and test

it using different inputs using the DIP switches.

2.7. Implement the multiplexer program that you developed in the Prelab, as shown in

Figure 5. To test the multiplexer we need to hard wire (in Verilog) RST_ADDR to

0xFF, PC to the address 0x0A, and MAR to 0x10. Connect IR to the 8 DIP switches,

and MEM_SEL to the 2 push-button switches on the board.

Figure 5: Implementation of a Simple Multiplexer

3. Supplementary Material

3.1. More on Verilog

3.1.1. Three-State Gates

1. bufif1(output, input, control): output equals the input if the control signal

is 1, and high-impedance state, z, if the control signal is 0.

2. bufif0(output, input, control): the control signal Is the complement of

bufif1.

3. notif1(output, input, control): same as bufif1 except the output is the

complement of the input if the control signal is 1.

4. notif0(output, input, control): same as bufif0 except the output is the

complement of the input if the control signal is 0.

3.1.2. Logic Levels

• 0 | Logic zero, false condition

• 1 | Logic one, true condition

• x | Unknown logic value

• z | High impedance

EE 231 Fall 2011

 6

3.2. Verilog – Behavioral Modeling

3.2.1. Always and Reg

1. Behavioral modeling uses the keywords always.

2. Target output is a type reg. Unlike a wire, reg is updated only when a new

value is assigned. In other words, it is not continuously updated as wire

data types.

3. Always may be followed by an event control expression.

4. Always is followed by the symbol ‘@’ which is followed by a list of

variables. Each time there is a change in those variables, the always block

is executed.

5. There is no semicolon at the end of the always block.

6. The list of variables are separated by logical operator or and not bitwise

OR operator “—“.

7. Below is an example of an always block:

always @(A or B)

…

…

…

3.2.2. if-else Statements

if-else statements provide a means for conditional outputs based on the arguments

of the if statement.

…

output out;

input s, A, B;

reg out;

…

…

if(s) out = A; // if select is 1 then out is A

else out = B; // else output is B

…

…

EE 231 Fall 2011

 7

3.2.3. case Statements

case Statements provide an easy way to represent a multi-branch conditional

statement.

1. The first statement that makes a match is executed

2. Unspecified bit patterns could be treated using default keyword.

