EE 231 Fall 2015

EE 231 Lab 2
Decoders and Multiplexers

1.Lab
1.1. Place a block of 8 DIP switches on your proto-board, Figure 1.

Figure 1: Dip Switches

1.2. Connect each lead on one side to VCC. You can use an external power or the VCC_SYS
provided on your board.

1.3. Put a 1k resistor from each of the leads on the other side to ground. Also on this side, place a
row of 8 pin header so that you have the outputs from all of these switches.

1.4. In order to be able to connect to the board you will need to assign pins to the proper
expansion header on your board. The easiest to use is the GPIO-0 at the top of the board,
Figure 2.

1.5. Now that the hardware is setup, design the binary coded decimal (BCD)-to-seven-segment
decoder and then test it using different inputs from the dip switches.

EE 231 Fall 2015

Altera EPCS16
Configuration
8 Green LEDs Device 40-pin GPIO Header

2 Push-buttons

USB Type
mini-AB Port e .‘
=8 TS i Altera Cyclone IV
M e : i EP4CE22F17C6N
= = il Cyclone®Iv FPGA
:! EP4CE N
L i
2Kb 12C : 26-pin Header
EEPROM -'«r"“u‘
4 Dip Switches 3 imllilt
(- | A/D Converter
40-pin GPIO
Header
2-pin External Digital 50MHz Clock
Power Header Accelerometer Oscillator

Figure 2: DEO-NANO Development Board

Use Figure 3 for the pin labels for the GPIO-0. Table 2 shows the pins assignments for the
GPIO-0.

GPIC 0 IN0_1 [GPIO_00
GPIO_0_INT 3 [l GPIO_01
GPIO_02 il GPIO_03
GPIO_04 gl GPIO_05
GPIO_06 GPIO_07
X s ¥
vee_sYsO—zri55s e o GPIO_09
GPIO_010 : : GPIO_011
GPIO_012 ais GPIO_013
GPIO_014 il GPIO_015
GPIO_016 oidie GPIO 017
GPIO_018 SRS GPIO_019
GPIO_020 i GPIO_021
GPIO_022 GPIO_023
X = =
VeCsPO—5510 024 :: | GPIO 025
GPIO_026 = GPIO 027
GPIO_028 S GPIO_029
GPIO_030 bl GPIO_031
GPIO_032 sl GPIO 033

Figure 3: Pin Distribution of the GPIO-0 Expansion header
2

EE 231

Fall 2015

GPI0-0 Left Column CPLD Pin # GPIO-0 Right Column CPLD Pin #
1 A8 2 D3
3 B8 4 3
5 A2 6 A3
7 B3 8 B4
9 A4 10 B5
11 - 12 -
13 A5 14 D5
15 B6 16 A6
17 B7 18 D6
19 A7 20 C6
21 c8 22 E6
23 E7 24 D8
25 E8 26 F8
27 F9 28 E9
29 - 30 -
31 9 32 D9
33 Ell 34 E10
35 Cii 36 B11
37 A12 38 D11
39 D12 40 B12

Table 1: Pin Assignments for GP1IO-0

1.6. Implement the multiplexer program that you made in the Prelab, as shown in Figure 4. To
test the multiplexer we need to hard wire in Verilog RST_ADDR to OxFF, PC to the
address 0x0A, and MAR to 0x10. Connect IR to the 8 DIP switches, and MEM_SEL to

the 2 push-button switches on the board.

Addr Mux Sel —--

| OXFF |

=
| MAR |
‘_I

Addr Mux

addmss

Figure 4: Implementation of a Simple Multiplexer

EE 231

Fall 2015

2.Supplementary Material

2.1.More on Verilog

2.1.1.Logic Levels

*0
o1
ox
z

Logic zero, false condition
Logic one, true condition
Unknown logic value
High impedance

1.1.Verilog — Behavioral Modeling

1.1.1.Always and Reg

1.Behavioral modeling uses the keywords always.

2.Target output is a type reg. Unlike a wire, reg is updated only when a new value is
assigned. In other words, it is not continuously updated as wire data types.

3.Always may be followed by an event control expression.

4 .Always is followed by the symbol ‘@’ which is followed by a list of variables. Each time

there is a change in those variables, the always block is executed.

5.There is no semicolon at the end of the always block.

6.The list of variables are separated by logical operator or and not the bitwise OR operator

(3 (3

7.Below is an example of an always block:
always @(A or B)

1.1.1.if-else Statements

if-else statements provide a means for conditional outputs based on the arguments of the
if statement.

output out;

input
reg

s, A, B;
out;

EE 231 Fall 2015

if(s) out=A; // if select is 1 then out is A
else out = B; // else output is B

1.1.2.case Statements

case Statements provide an easy way to represent a multi-branch conditional statement.
1.The first statement that makes a match is executed
2.Unspecified bit patterns should be treated using “default” as the keyword.

Program 1 Four-to-one Line Multiplexer

module mux_4x1_example(
output reg out,
input [1:0] s, // select represented by 2 bits
input in_0, in_1, in_2, in_3);

always @(in_0, in_1, in_2, in_3, s)
case(s)
2°b00: out = in_0; /l'if s is 00 then output is in_0
2’b01: out =1n_1; //'if s 1s 01 then output is in_1
2’b10: out =1n_2; /...
2’bl1: out =in_3;
endcase
endmodule

