
EE 231 Fall 2015

EE 231 Lab 2

Decoders and Multiplexers

1.Lab
1.1. Place a block of 8 DIP switches on your proto-board, Figure 1.

Figure 1: Dip Switches

1.2. Connect each lead on one side to VCC. You can use an external power or the VCC_SYS
provided on your board.

1.3. Put a 1k resistor from each of the leads on the other side to ground. Also on this side, place a
row of 8 pin header so that you have the outputs from all of these switches.

1.4. In order to be able to connect to the board you will need to assign pins to the proper
expansion header on your board. The easiest to use is the GPIO-0 at the top of the board,
Figure 2.

1.5. Now that the hardware is setup, design the binary coded decimal (BCD)-to-seven-segment
decoder and then test it using different inputs from the dip switches.

1

EE 231 Fall 2015

Figure 2: DE0-NANO Development Board

Use Figure 3 for the pin labels for the GPIO-0. Table 2 shows the pins assignments for the
GPIO-0.

Figure 3: Pin Distribution of the GPIO-0 Expansion header
2

EE 231 Fall 2015

Table 1: Pin Assignments for GPIO-0

1.6. Implement the multiplexer program that you made in the Prelab, as shown in Figure 4. To
test the multiplexer we need to hard wire in Verilog RST_ADDR to 0xFF, PC to the
address 0x0A, and MAR to 0x10. Connect IR to the 8 DIP switches, and MEM_SEL to
the 2 push-button switches on the board.

Figure 4: Implementation of a Simple Multiplexer

3

EE 231 Fall 2015

2.Supplementary Material

2.1.More on Verilog

2.1.1.Logic Levels

0 | Logic zero, false condition
1 | Logic one, true condition
x | Unknown logic value
z | High impedance

1.1.Verilog – Behavioral Modeling

1.1.1.Always and Reg
1.Behavioral modeling uses the keywords always.

2.Target output is a type reg. Unlike a wire, reg is updated only when a new value is
assigned. In other words, it is not continuously updated as wire data types.

3.Always may be followed by an event control expression.

4.Always is followed by the symbol ‘@’ which is followed by a list of variables. Each time
there is a change in those variables, the always block is executed.

5.There is no semicolon at the end of the always block.

6.The list of variables are separated by logical operator or and not the bitwise OR operator
“—“.

7.Below is an example of an always block:
always @(A or B)
…
…
…

1.1.1.if-else Statements

if-else statements provide a means for conditional outputs based on the arguments of the
if statement.

…
output out;
input s, A, B;
reg out;

4

EE 231 Fall 2015

…
…
if(s) out = A; // if select is 1 then out is A
else out = B; // else output is B
…
…

1.1.2.case Statements

case Statements provide an easy way to represent a multi-branch conditional statement.
1.The first statement that makes a match is executed
2.Unspecified bit patterns should be treated using “default” as the keyword.

5

