EE 231 Fall 2015

EE 231 Prelab 4
Arithmetic Logic Unit

The heart of every computer is an Arithmetic Logic Unit (ALU). This is the part of the computer
which performs arithmetic operations on numbers, e.g. addition, subtraction, etc. In this lab you
will use the Verilog language to implement an ALU having 10 functions. Use of the case
structure will make this job easy.

[7 - 0] DATA ™ — Z

ALU

[7: 0] ACCA [T:0] result

[? : 0] ALU_CTL

Figure 1: ALU Block Diagram

The ALU that you will build (see Figure 1) will perform 10 functions on 8-bit inputs (see Table
1). Please make sure you use the same variable name as the ones used in this lab. Don’t make
your own. The ALU will generate an 8-bit result (result), a one bit carry (C), and a one bit zero-
bit (Z). To select which of the 10 functions to implement you will use ALU_CTL as the selection
lines.

1.Prelab

1.1.Fill out Table 1. How many bits should ALU_CTL be?
1.2.Write code to implement the ALU.



EE 231

Fall 2015

ALU _CTL

Mnemonic

Description

LOAD

(Load DATA into RESULT)

DATA == RESULT

Cisadon't care

1= ZifRESULT == 0, 0 = Z otherwise

ADDA

(Add DATA to ACCA)

ACCA + DATA == RESULT

Ciscarry from addition

1= ZifRESULT == 0,0 = Z otherwise

SUBA

(Subtract DATA from ACCA)

ACCA - DATA == RESULT

C is borrow from subtraction

1= ZifRESULT == 0,0 = Z otherwise

ANDA

(Logical AND DATA with ACCA)

ACCA & DATA == RESULT

Cisadon't care

1= ZifRESULT == 0,0 = Z otherwise

DRAA

(Logical OR DATA WITH ACCA)
ACCA | DATA == RESULT

Cisadon't care

1= ZIfRESULT == 0,0 = Z otherwise

COMA

{Compliment of ACCA)

ACCA == RESULT

1=>C

1=> ZifFRESULT == 0,0 = Z otherwise

INCA

LSRA

(Increment ACCA by 1)

ACCA + 1 = RESULT

Cisadon't care

1 ifRESULT ==0, 0 & Z otherwise
[Logical shift right of ACCA)

Shift all bits of ACCA one place to the right:
0 = RESULT[7], ACCA[7:1] & RESULT[6:0]
ACCA[0] »C

1= ZifRESULT == 0,0 =* ¥ otherwise

LSLA

(Logical shift left of ACCA)

Shift all bits of ACCA one place to the left:

0 = RESULT[0], ACCA[6:0] = RESULT[7:1]
ACCA[7] = C

1= ZifRESULT == 0,0 = Z otherwise

ASRA

[Arithmetic shift right of ACCA)

Shift all bits of ACCA one place to the right:
ACCA[0] = RESULT[7], ACCA[7:1] = RESULT[6:0]
ACCA[D] > C

1= Zif RESULT == D, 0 = Z otherwise

Table 1: ALU functions



