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Abstract—Using Verilog code, an eight-bit computer was 

created with its own unique assembly language to produce 

specific light patterns. To do this, computer components such as 

an arithmetic logic unit, a control unit, and multiple registers 

were written and connected using a block diagram file within 

Altera’s computer program Quartus II. Each computer 

component’s logic was navigated using a finite state machine 

(FSM) and fed through a series of registers and commands to 

create an output. The output was the successful interaction of all 

the computer components and was measured with the use of LED 

lights on a Field-Programmable Gate Array (FPGA). 

Keywords— assembly language, arithmetic logic unit, control 
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I. INTRODUCTION 

     The microcomputer designed in this final project uses 

eight-bit logic and operation codes (op codes) to perform 

functions. To test the functionality of the computer, assembly 

language was written to implement a code which would cycle 

through LED’s on an FPGA. This was done using a block 

diagram, as seen in Figure 7. 

     The computer was built using a control unit, an ALU, 

registers, a clock divider, a multiplexer, and a memory 

component, as seen in Figure 1. The control unit was the 

source of instructions via an FSM. Two case statements were 

used to implement the fetch, reset, execution 1, and execution 

2 stages. The control unit also controls different load signals 

within the computer to allow for complete command of 

registers. When an instruction is fed into the control unit, it 

uses the case statement to determine which command is being 

fed in and uses that feedback to switch into another case 

statement and begin the executables. Once in either execution 

state, a series of signals are either turned on or off to prepare 

the ALU and the other registers. The ALU performs the logic 

for the instruction that is being sent to it. Its output is then fed 

to the appropriate registers. There are five eight-bit registers 

and they are all used to navigate the current instruction, as 

well as store and access memory. The Program Counter (PC) 

register stores the current location in the program memory. 

The Memory Addressing Register (MAR) collects data from 

arbitrary memory without losing the current memory address 

spot pointed to by the PC register. The Accumulator A register 

(ACCA) serves as temporary data storage for arithmetic 

operations. The Instruction Register (IR or INST) stores 

instructions for the executables in the FSM. The C and Z 

registers are one bit registers used to store the carry and zero 

flags, respectively, from the ALU operations. A clock divider 

is used to slow the cycle of the FPGA from 50 MHz to 

approximately 100 Hz to make the output display slow enough 

to be seen. The multiplexer is used to select where data is 

going currently and allows for storage into memory. The 

memory block component is a series of addresses which hold 

op codes for the different instructions. The memory unit is the 

basis for the light program because, as the pc register shifts to 

a new memory address and reads it, the memory component 

tells the computer which command it must use to continue the 

program. 

 

 
Figure 1: Simple Computer 

 

     To prove that the different components work together, two 

methods of observation were implemented. On the computer, 

a waveform was generated to show the values of all 

component inputs and outputs. The purpose of this is to allow 

for a step-by-step logic check of each function. After the 

waveform was checked for accuracy, the program was 
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downloaded and run on an FPGA. With successful 

programming and pin assignment, the onboard LEDs were 

illuminated in the desired pattern.  This result can be 

interpreted as a successfully connected eight-bit computer. 

The code for all portions of the computer can be found in the 

Appendix, Figures 10-19. 

II. BACKGROUND 

A. Assembly Language 

Assembly is one of the most basic forms of computer 
programming which allows the user to breakdown processes to 
very basic steps. In assembly language, a programmer is able 
to directly manipulate how the processor stores information. 
This is done with the use of very simple digital logic in the 
forms individual commands interacting with the system’s 
memory and registers.  

B. Digital Logic 

Digital logic is the backbone of all electric devices. 1’s 
(high or on) and 0’s (low or off) are used to signify the most 
basic form of logic. Using 1‘s and 0’s in the form of logic 
represents patterns and signals which are used to communicate 
with other electronic devices. Circuits and logic gates are 
created using these simple strings of 1’s and 0’s which are the 
fundamentals of the electronic world.  

C. Field-Programmable Gate Arrey (FPGA) 

     An FPGA is a kind of Programmable Logic Device or 

PLD. PLD’s consist of a series of programmable switches 

which allow user interface to control the function of a device. 

These switches are the internal circuitry of such devices as 

PLG’s and FPGA’s. In general, FPGA’s contain a large 

number of small logic circuit elements which can be 

connected and controlled with the use of the onboard logical 

switches. The setup of these devices makes them widely 

useful in a variety of tailored situations. The specific FPGA 

used in this experiment is the De0-Nano from Terasic. The 

layout can be seen in Figure 2. 

 

 
Figure 2: De0-Nano Layout 

D. Arithmetic Logic Unit (ALU) 

     An ALU is a kind of logic circuit which performs various 

Boolean and arithmetic operations. This is useful because it 

allows for a user to create different functions that the ALU can 

perform such as addition and subtraction, logical and bitwise 

operations, such as AND and OR, and data shifts to name a 

few. As seen in Figure 3, the ALU takes in two different data 

sets and an instruction. It performs the given task and outputs 

the result, c, and z flags based upon the arithmetic operation. 

 

 
Figure 3: Arithmetic Logic Unit 

E. Finite State Machine (FSM) 

     A FSM is a sequential circuit which is generally depicted 

in a state diagram. State diagrams visually show how the logic 

of the circuit works. If an input is a 1, then it may go to one 

state, but if it is a 0, then it may go to another or cycle through 

its present state. FSM’s generally have fetch, reset, and 

executable states, as seen in Figure 4. The fetch state awaits 

instruction to determine which function is desired. After the 

instruction is chosen, the fetch state prepares for its execution 

state(s). For each op code the control unit must change signals 

within the machine to properly parse through memory and 

perform the task at hand. The final option within this system is 

a reset which sets all applicable one-bit inputs to 1 (as they are 

active-low) and changes the current memory address to 0xFF 

so that when the program begins, it begins at 0x80, the 

location of the start of  the program. 

 

 
Figure 4: Finite State Machine 

F. Latches and Registers 

A latch is a memory element built with NOR or NAND gates 

which use set and reset signals to change the state of the 

circuit. A basic latch, shown in Figure 5, is a circuit in which 
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two NOR gates are connected. The output of a latch can be 

saved as memory. Gated latches are basic latches which are 

controlled by a clock upon either a rising or falling edge. A 

flip-flop is another name for a gated latch. A register is a flip-

flop which stores one bit of information. Registers can be used 

in conjunction with other registers to allow for larger amounts 

of bitwise storage.  

 

 
Figure 5: Basic SR Latch 

G. Multiplexers 

     A multiplexer is implemented when there are a number of 

input possibilities and only one output value allowed. When a 

multiplexer is present, a computer is able to decide exactly 

which of the different options it wants to use to access data. It 

works by using input signals to generate an output signal 

based upon the state of one of the inputs. For example, Figure 

6 shows a four-to-one multiplexer. When a certain two bit 

value is passed in through the select line, one of the four 

possible inputs is selected and passed through to the output. 

 
Figure 6: Four to One Multiplexer 

 

H. Control Unit 

     A control unit takes in simple inputs and determines the 

desired functions which must be used to output a desired 

result. To make this happen, an FSM is used to navigate 

sequential logical circuits and pathways, using fetch, reset, 

ex1 and ex2. The control unit can be seen in Figure 1, on the 

left side of the image. It shows how the different signals 

interact with the rest of the computer.  

III. RESULTS 

     An eight-bit computer was designed to use assembly 

language and op codes to implement logical programs. This 

was proven by the demonstration of a running light program in 

which an illuminated LED began on one side of the eight on-

board LEDs and moved through to the other side. As the 

program continued,  the previous LED was turned off and the 

next was turned on sequentially, moving from the first to last 

LED and back to the first once more, as seen in Figure 9 in the 

Appendix. The pattern continued until disrupted by the reset 

signal, assigned to one of the push buttons on the FPGA. By 

using op codes stored in memory, the computer worked with 

its components to send information throughout the computer 

to output the correct sequence. When the program began, the 

PC register pointed to the first memory address. Within that 

address was the instruction LDAA_IMM which immediately 

loads the next value. For this to happen, the computer must 

pass the relevant information through the control unit to allow 

it to select from one of its potential functions (which can be 

found in Table 1 in the Appendix ).To illuminate an LED, a 

value, in this case (01)16, was placed in the next accessed 

memory address. The following memory address contained 

the op code to store ACCA, which stores the previously 

loaded value into memory.  The last of this basic sequence is a 

left shift of the data, which pushes all of the numbers to the 

left, filling a 0 where there is no data. This is done with the 

command LSLA. After the value is stored in ACCA, the next 

memory address contains the op code to output to the LEDs at 

value 8’h00 (as designated in the memory file). After the 

output is seen, memory continues to cycle through storing the 

1, left shifting with a zero pad, and outputting the shifted 

value. Once the program reaches the eighth repetition, it must 

use the JMP operation to jump back to the beginning of the 

program to allow it to run continuously.  

     To prove that is output is logically correct, a waveform file 

was created. While reset is high, the program can run. This 

happens because of the active low nature of reset. In looking 

at output, the binary values correspond to the state of the lights 

in which one light is on and seven are off. In the individual 

output values, each high value corresponds to when that LED 

is illuminated. ACCA shows the values at each stage of the 

pattern, as the 1 in an eight-bit number shifts throughout the 

different places. Data and inst both show how the computer 

moves through the instructions and the different stages of the 

FSM (fetch, ex1, and ex2). Pc_out shows the different places 

in memory that the program accesses as it runs through the 

entire program and jumps back to the start. 

IV. CONCLUSION 

Over the course of one semester, an eight-bit computer was 
constructed and interconnected in the style of Verilog coding. 
With the use of assembly language and op codes, the computer 
successfully accessed memory, an arithmetic logic unit, a 
multiplexer, and a control unit to perform a given program. A 
running light program was designed for this project as a 
demonstration of success.  This computer worked successfully 
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and  displayed a  running light program on the onboard LED 
lights on the FPGA. 
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V. APPENDIX 

 

 
Figure 7: Block Diagram 

 

 

 
Figure 8: Waveform File For Running Lights 

 
Figure 9: Visual Representation of Running Light Program 
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Figure 10: Z Register Code 

 

 

 

 
Figure 11: C Register Code 
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Figure 12: Runner Code 
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Figure13: ACCA Register Code 

 

 
Figure14: INST Register Code 
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Figure 15: MAR Register Code 

 

 
Figure16: PC Register Code 

 

 
Figure17: 4 to 1 Multiplexer Code 
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Figure18: Arithmetic Logic Unit Code 
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Figure19: Control Unit Code 
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Table 1: ALU Control Operations 
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