Making an Eight-Bit Computer

Using Verilog and Assembly Coding Styles

Courtney Johnson
New Mexico Tech

Electrical Engineering Dept.

Socorro, NM
cjohnson@nmt.edu

Abstract—Using Verilog code, an eight-bit computer was
created with its own unique assembly language to produce
specific light patterns. To do this, computer components such as
an arithmetic logic unit, a control unit, and multiple registers
were written and connected using a block diagram file within
Altera’s computer program Quartus II. Each computer
component’s logic was navigated using a finite state machine
(FSM) and fed through a series of registers and commands to
create an output. The output was the successful interaction of all
the computer components and was measured with the use of LED
lights on a Field-Programmable Gate Array (FPGA).

Keywords— assembly language, arithmetic logic unit, control
unit, field-programmable gate array, finite state machine, registers

I. INTRODUCTION

The microcomputer designed in this final project uses
eight-bit logic and operation codes (op codes) to perform
functions. To test the functionality of the computer, assembly
language was written to implement a code which would cycle
through LED’s on an FPGA. This was done using a block
diagram, as seen in Figure 7.

The computer was built using a control unit, an ALU,
registers, a clock divider, a multiplexer, and a memory
component, as seen in Figure 1. The control unit was the
source of instructions via an FSM. Two case statements were
used to implement the fetch, reset, execution 1, and execution
2 stages. The control unit also controls different load signals
within the computer to allow for complete command of
registers. When an instruction is fed into the control unit, it
uses the case statement to determine which command is being
fed in and uses that feedback to switch into another case
statement and begin the executables. Once in either execution
state, a series of signals are either turned on or off to prepare
the ALU and the other registers. The ALU performs the logic
for the instruction that is being sent to it. Its output is then fed
to the appropriate registers. There are five eight-bit registers
and they are all used to navigate the current instruction, as
well as store and access memory. The Program Counter (PC)
register stores the current location in the program memory.
The Memory Addressing Register (MAR) collects data from
arbitrary memory without losing the current memory address
spot pointed to by the PC register. The Accumulator A register
(ACCA) serves as temporary data storage for arithmetic
operations. The Instruction Register (IR or INST) stores

instructions for the executables in the FSM. The C and Z
registers are one bit registers used to store the carry and zero
flags, respectively, from the ALU operations. A clock divider
is used to slow the cycle of the FPGA from 50 MHz to
approximately 100 Hz to make the output display slow enough
to be seen. The multiplexer is used to select where data is
going currently and allows for storage into memory. The
memory block component is a series of addresses which hold
op codes for the different instructions. The memory unit is the
basis for the light program because, as the pc register shifts to
a new memory address and reads it, the memory component
tells the computer which command it must use to continue the
program.

Control Processor

Nk =

%
i

|

l4

h—.
i
i

Figure 1: Simple Computer

To prove that the different components work together, two
methods of observation were implemented. On the computer,
a waveform was generated to show the values of all
component inputs and outputs. The purpose of this is to allow
for a step-by-step logic check of each function. After the
waveform was checked for accuracy, the program was

downloaded and run on an FPGA. With successful
programming and pin assignment, the onboard LEDs were
illuminated in the desired pattern. This result can be
interpreted as a successfully connected eight-bit computer.
The code for all portions of the computer can be found in the
Appendix, Figures 10-19.

Il. BACKGROUND

A. Assembly Language

Assembly is one of the most basic forms of computer
programming which allows the user to breakdown processes to
very basic steps. In assembly language, a programmer is able
to directly manipulate how the processor stores information.
This is done with the use of very simple digital logic in the
forms individual commands interacting with the system’s
memory and registers.

B. Digital Logic

Digital logic is the backbone of all electric devices. 1’s
(high or on) and 0’s (low or off) are used to signify the most
basic form of logic. Using 1‘s and 0’s in the form of logic
represents patterns and signals which are used to communicate
with other electronic devices. Circuits and logic gates are
created using these simple strings of 1’s and 0’s which are the
fundamentals of the electronic world.

C. Field-Programmable Gate Arrey (FPGA)

An FPGA is a kind of Programmable Logic Device or
PLD. PLD’s consist of a series of programmable switches
which allow user interface to control the function of a device.
These switches are the internal circuitry of such devices as
PLG’s and FPGA'’s. In general, FPGA’s contain a large
number of small logic circuit elements which can be
connected and controlled with the use of the onboard logical
switches. The setup of these devices makes them widely
useful in a variety of tailored situations. The specific FPGA
used in this experiment is the De0-Nano from Terasic. The
layout can be seen in Figure 2.

Altera EPCS16
Configuration

8 Green LEDs Device 40-pin GPIO Header

2 Push-buttons
USB Type
mini-AB Port
Altera Cyclone IV
EP4CE22F17C6N
FPGA

2Kb 12C 26-pin Header

EEPROM

4 Dip Switches. AJD Converter

40-pin GPIO
Header

2-pin External

Digital 50MHz Clock
Power Header Accelerometer Oscillator

Figure 2: De0-Nano Layout

D. Arithmetic Logic Unit (ALU)

An ALU is a kind of logic circuit which performs various
Boolean and arithmetic operations. This is useful because it

2

allows for a user to create different functions that the ALU can
perform such as addition and subtraction, logical and bitwise
operations, such as AND and OR, and data shifts to name a
few. As seen in Figure 3, the ALU takes in two different data
sets and an instruction. It performs the given task and outputs
the result, c, and z flags based upon the arithmetic operation.

[7:0] DATA |:>
[7:0] aCCA |::>

ALU

i

[7: 0] ALUCTL
Figure 3: Arithmetic Logic Unit

E. Finite State Machine (FSM)

A FSM is a sequential circuit which is generally depicted
in a state diagram. State diagrams visually show how the logic
of the circuit works. If an input is a 1, then it may go to one
state, but if it is a 0, then it may go to another or cycle through
its present state. FSM’s generally have fetch, reset, and
executable states, as seen in Figure 4. The fetch state awaits
instruction to determine which function is desired. After the
instruction is chosen, the fetch state prepares for its execution
state(s). For each op code the control unit must change signals
within the machine to properly parse through memory and
perform the task at hand. The final option within this system is
a reset which sets all applicable one-bit inputs to 1 (as they are
active-low) and changes the current memory address to OxFF
so that when the program begins, it begins at 0x80, the
location of the start of the program.

::> [T:0] result

Figure 4: Finite State Machine

F. Latches and Registers

A latch is a memory element built with NOR or NAND gates
which use set and reset signals to change the state of the
circuit. A basic latch, shown in Figure 5, is a circuit in which

two NOR gates are connected. The output of a latch can be
saved as memory. Gated latches are basic latches which are
controlled by a clock upon either a rising or falling edge. A
flip-flop is another name for a gated latch. A register is a flip-
flop which stores one bit of information. Registers can be used
in conjunction with other registers to allow for larger amounts
of bitwise storage.

R
Q

Ol

S

Figure 5: Basic SR Latch

G. Multiplexers

A multiplexer is implemented when there are a number of
input possibilities and only one output value allowed. When a
multiplexer is present, a computer is able to decide exactly
which of the different options it wants to use to access data. It
works by using input signals to generate an output signal
based upon the state of one of the inputs. For example, Figure
6 shows a four-to-one multiplexer. When a certain two bit
value is passed in through the select line, one of the four
possible inputs is selected and passed through to the output.

Figure 6: Four to One Multiplexer

H. Control Unit

A control unit takes in simple inputs and determines the
desired functions which must be used to output a desired
result. To make this happen, an FSM is used to navigate
sequential logical circuits and pathways, using fetch, reset,
ex1 and ex2. The control unit can be seen in Figure 1, on the
left side of the image. It shows how the different signals
interact with the rest of the computer.

Il. RESULTS

An eight-bit computer was designed to use assembly
language and op codes to implement logical programs. This
was proven by the demonstration of a running light program in
which an illuminated LED began on one side of the eight on-
board LEDs and moved through to the other side. As the
program continued, the previous LED was turned off and the
next was turned on sequentially, moving from the first to last
LED and back to the first once more, as seen in Figure 9 in the
Appendix. The pattern continued until disrupted by the reset
signal, assigned to one of the push buttons on the FPGA. By
using op codes stored in memory, the computer worked with
its components to send information throughout the computer
to output the correct sequence. When the program began, the
PC register pointed to the first memory address. Within that
address was the instruction LDAA_IMM which immediately
loads the next value. For this to happen, the computer must
pass the relevant information through the control unit to allow
it to select from one of its potential functions (which can be
found in Table 1 in the Appendix).To illuminate an LED, a
value, in this case (01)., Was placed in the next accessed
memory address. The following memory address contained
the op code to store ACCA, which stores the previously
loaded value into memory. The last of this basic sequence is a
left shift of the data, which pushes all of the numbers to the
left, filling a O where there is no data. This is done with the
command LSLA. After the value is stored in ACCA, the next
memory address contains the op code to output to the LEDs at
value 8’h00 (as designated in the memory file). After the
output is seen, memory continues to cycle through storing the
1, left shifting with a zero pad, and outputting the shifted
value. Once the program reaches the eighth repetition, it must
use the JMP operation to jump back to the beginning of the
program to allow it to run continuously.

To prove that is output is logically correct, a waveform file
was created. While reset is high, the program can run. This
happens because of the active low nature of reset. In looking
at output, the binary values correspond to the state of the lights
in which one light is on and seven are off. In the individual
output values, each high value corresponds to when that LED
is illuminated. ACCA shows the values at each stage of the
pattern, as the 1 in an eight-bit number shifts throughout the
different places. Data and inst both show how the computer
moves through the instructions and the different stages of the
FSM (fetch, ex1, and ex2). Pc_out shows the different places
in memory that the program accesses as it runs through the
entire program and jumps back to the start.

IV. CONCLUSION

Over the course of one semester, an eight-bit computer was
constructed and interconnected in the style of Verilog coding.
With the use of assembly language and op codes, the computer
successfully accessed memory, an arithmetic logic unit, a
multiplexer, and a control unit to perform a given program. A
running light program was designed for this project as a
demonstration of success. This computer worked successfully

and displayed a running light program on the onboard LED
lights on the FPGA.

V. APPENDIX

FEREE TR R R
L R el i
dae i B R P
ek H
e S Ane: a4 Inas
ins] st I_:
—tnr7 arr
di
Reset
loat
ne
insw
amametal
=ich : FESEREErES
7l [Binned Infe. Lo Lm = AT i
T i fii —{DI7..C ar.
—‘m et : o
ACCAIT. |
TAIT. o
: [—
i L
7. staoel1™=
:] acea | i
Reset [et 1. e o il oty
ir o loat
addr mux
alu arit s
rh
cho
mem
la
insTT < ol
—annR SFIT
insF ‘
-
B R
i
data 7 anta outr{—T
ot oo outnat o
Tk
w
Figure 7: Block Diagram
% Cock.. BO
. Reset.. BO L
4 v outp... B 0000O... 00000000 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000 00000001
= ou.. BO
25 ou.. BO
ESY ou.. BO
E=S ou.. BO
E-3 ou.. BO
k=3 ou.. BO
E=3 ou.. BO
E™S ou.. BO
%% > Acca.. H00 00 01 02 04 08 10 20 40 80 01
2 > data_.. H80 80)01 X023 00 {0AX 02 {00x01X0AX 02 ¥00X02X0AX 02 ¥00)04X0A) 02 {00)08}0AX 02 X00X10X0AX 02 {00X20X0AX 02 X00X40X0DX80) 01 X02)00%80)X0AY_ 02 00301
2 div_ck BO Iy e B e e RN R e NN
% > inst_.. HO00 00 01 02 0A 02 0A 02 0A 02 0A 02 0A 02 0A 02 0A 02 0D 01 02 0A
2% > mar_... H00 00
% > pc_out H00 00 }80XB1X82)83X_84 X 85 86X 87 X 88 X89X 8A X 8B XBC)| 8D X BE BF 90 X Oof }02) 93 i o4 (95X 96 X 07 X9BX 99 OAXBOXBIX82)X83W 84 X 85 XB6H 8

Figure 8: Waveform File For Running Lights

Step

N QJs=i § N QN |
| N jm=i N QN |

mml o 0 B 8 N QB |

(]

Figure 9: Visual Representation of Running Light Program

S/0ne bit register to hold walus for zero flag
SfCourtney Johnson
SfOctober &, 2015

module z(z_in,load,z_out);

input z_in,load;
output reg Z out;

alwayvs B (#)

begin
if (~1load)
begin
if (2 in == 0) SAif walue i=s zero,
Z_out = 1;
el=se
Z out = 0;
end
end
endmodule

Figure 10: Z Register Code

flag i= turned on

|[f/Cne bit register to hold value for carry flag

S fCourtney Johnson
S fOctober &, 2015

module c{c in,load,c ouat}):

input c_in,load:
output reg c_out;

always @ (*) Siholds last wvalus pasz=sed in

begin
if(~1load)
c_out <= c_in;
end
endmodule

Figure 11: C Register Code

VfProgram works as a memory block
//Courtney Johnson
//Hovember 9, 2015

‘include "constants.v"

module runner |
input [7:0] data in,
input [7:0] input port,
input [7:0] address,
input clk,Clock in,
input we,
input reset, Reset,
cutput [7:0] data out,
cutput reg [7:0] output_port

reg [7:0] mem [0:127]:

assign data out = (address ==
(address ==
{addres=ss=s[7] ==

always @ (posedge clk or negedge
if (~reset)
begin
ffmem_init file

J/mem[7'h00] = 8'hOO:

*INST_STRA;

= "INST_ LSL&4;
= "INST_STLL:

“INST_LSLA;
“INST_STRA:

= "INST_0ME:

= “INST_LDRA IMM;

for running lights

J/data in from other programs

J/memory address from mux

J/adjusted clock signal

S /memory =signal from control
f/aystem reset

J/data stored in current memory address

}; //output to leds

100) ? output_port

)1} ? input port

1'bl)y ? mem[address[6:0]]: 8'hxx;

reset)

J// hddress OxBO

J hddress 0x8l-- IMM immedietly loads next wvalue
1 /{ Rddress 0x82-- Sets wvalue for acca
= "INST_STARA;

(1)

// Bddress 0x84-- LED output--see statement below addresses- 00000001

// Bhddress 0x32

hoo; // Bddress 0x93 - 00100000

//{ Bddress 0x3%4
// Bddress 0x35

hoo; // BAddress 0x96 - 01000000

// Address 0x97
// Bddress 0x398

= 8'h00; // Bddress 0x93 - 10000000

/{ Address 0x9 - Jumps

// Rddress 0x99 - 10000000

mem[7'n7f] = §'h80; // Rddress 0xff RESET VEC

end
else begin
if ((address == nood) && (~we))
output_port <= data_in;
if ((addre=s=[7]) && (~we))
mem[address[&6:0]] <= data_in;

end

endmodule

Figure 12

S/ hddress 0x83-- Stores acca in meEmory

= hOo;

= "INST_LSLA; // Bddress O=x85

= "INST_STRAA; /{ hddress 0xBE&

= 8'h00; //{ Address 0x87 - 00000010
= "INST_LSLA; S/ Bddre=ss OxE8E

= "INST_STRR: J// hddress 0Ox839

= 8'h00; /{ Address 0OxBa - 00000100
= "INST_LSLA; // Address 0xBb

= "INST_STRR; // Rddress 0x8c

= 8'h00; /{ Rddress 0x8d - 00001000
= “INST_LS5LA; // Address OxBe

= "INST_STRA; // Bddress O=x8f

= 8'h00; /{ Bddress 0x%0 - 00010000
= "INST_LSLA; S/ Bddress 0O=xS1

back to the start

TOR

: Runner Code

VﬁFunctiDn stores 8§ bit data and loads data if load if low on
ffrising edge of clock

f/Courtney Johnson

f/October &, 2015

module acca(D,clk, , load);
input [7:0]D; f/8 bit register
input clk, load;

output reg [T:0]1Q:

always @ (posedge clk)

begin
if(load == 0) S fkeeps data the same if load = 0
Q <= D;
end
endmodule

Figurel3: ACCA Register Code

FIFunctiDn stores 8 bit data and loads data if load if low on
ffrising edge of clock

f/Courtney Johnson

f/October &, 2015

module inst (D, clk,Q, load);
input [7:0]D;
input clk, load;

output reg [T:0]1Q:

always @ (posedge clk)

begin
if(load == 0) f/keeps data the same if load i= O
Q <= D;
end
endmodule

Figurel4: INST Register Code

ffFunction =stores 8 bit data and loads data if load if low on
ffrising edge of clock

ffCourtney Johnson

ffOoctober &, 2015

nodule mar (D, clk, g, load) ;
input [T:0]D;
input clk, load;

output reg [T:0]1Q:

alway=s B (posedge clk)

begin
if(load == 0) ff=tays the same if load is O
o <= D:
end
zndmodule

Figure 15: MAR Register Code

|/ /Program Counter register
J//Courtney Johnson
S /October &, 2015

module pe (D, clk,Resetn,, load, incr) ;

input [7:0]D;
input clk,Resetn,load, incr;
output reg [T7:0]1Q;

always @ (negedge Resetn, posedge clk) //negedge is falling edge, posedge is rising edge of clock
begin
if (Resetn == 0)
Q <= 0
else
begin
if(load == 0) //Wew data walue is loaded
Q <= D:
else if (incr == 0) //Q value is incremented
Q<=0+ 1;
else
Q== Q
end
end
endmodule

Figurel6: PC Register Code

VfThis uses a four to one multiplexer to change the display on two seven segment displays at one time.
//It also allows for the use of a2 & switch dip switch to change the display individually.

//Buthor: Courtney Johnson

//Date: 9/15/2015

module lab2 (muxout, ADDR SEL, pc, Wmar);
input [7:0]pc, mar;
input [1:0]ADDR_SEL: //Bllocates 2 bits for ARDDR_ SEL
output reg [7:0]muxout;

always @ (ARDDR_SEL)

case (ADDR S5EL) S /U=se= the wvalue for LDDER_SEL to select an input
2'pll : muxout = £'b11111111; //Input for dip switch
2'b01 : muxXout = mar; //fHardeoded wvalue for MAR 0x10
2'hl0 : muxout = pc; [/ /Hardcoded walue for PC 0OxO0&
2'b00 : muxout = §'b11111111; //Hardcoded wvalur for RST_ADDR OxFF
endcase

endmodule
Figurel7: 4 to 1 Multiplexer Code

V!This function is the logic behind an Arithmetic Logic Unitc (ALU) to perform

//a variety of logic functions
f/Courtney Johnson
Jf/S5eptemper 29, 2015

“include "constants.wv"

ffallows for easy declaration of logic functions

module alu function (ALU CTL,ACCH, DATR,result,z,c);

input [3:0]ALU_CTL;
input [7:0]ACCH,DATA;
output reg [7:0]result;
output reg z,c;

//selects which function to perform
S/input numbers for logic functions
//the result from the specific operand
ffz (zero) flag and c (carry) flag

//parameter LCCR
//parameter DATL

&'bl0110011;
8'b01111110;

always B (*)

DATR;

begin
case (ALT CTL)
“ALU LOAD: result = DATHE;
"ALU ADDRA: {c,result} = RACCA + DATA;
"RLU SUBA: {c,result} = ACCA
TRLU RWMDA: result = ACCAR && DATR:
"ALU ORBA: result = ACCR || DATA;

"ALU COMA: begin
result = ~RACCA;
c = 1;
end

"RLU INCA: result = ACCAE + 1;

"ALU LSRA: begin
c = RACCA[C]:
result = ACCR »>» 1;
end
"RLU LSLA: begin
c = RACCA[7]:
result = ACCR << 1;
end
"ALU ASRA: begin
c = ACCA[O]:
result = ACCR »» 1;
result[7] = c;
end
default: begin
c = 0;

-

result 0;

end

endcase
if (result == 0)

begin

z =1

end
else

begin

end
end

endmodule

f/if

/fcase statement switches input for RLO_
//loads DATA into result

/fadds ACCA and DATA

//subtracts DATR from RACCR

f/logically ands DATA and ACCL
//logically ors DATA and ACCL

f/inverts RCCR

J//denotes a carry flag
f/increments ACCA by adding 1

fflogically shifts ACCA to the right
//=sets carry to lsb

f/logically shifts ACCAR to the left
f/3ets carry to msb

J/arithmetic shift to right
//=sets carry to lsb

f/wraps 1sb around to msb

ffcovers any other case

result is 0, the z flag is 1

Figurel8: Arithmetic Logic Unit Code

10

[/ Tnis funcrions as a control unit for a computer
//Courtney Johnson
//October 30, 2015

‘include "constants.v"
module control(stage,acca_load,pc_inc,pc_load,mar_load,ir_load,inst,addr_mux_sel,zlu_ctrl,z_load,c_load,c,z,mem_w, rerun,clock);

//inst is the instruction register

//c and z are flags built into the programs which will be used in the computer

//rerun is the cpu reset

//clock is the input clock

//stage and addr mux_sel keep track of wheze the program is and which selections have been made
//alu_ctrl is the input for the alu to run the specific program

//all of the inc and load signals hold a one bit value to Turn them on or off

//mem_w chooses whether to write to memory

input [7:0]inst;
input e,z, rerun, clock:

cutput reg [1:0]stage,addr_mux_sel;

ocutput reg [2:0]alu_ctrl;

output reg acca_load,pc_inc,pc_load,mar_load,ir_lead,mem w,c_load,z_load:

//parameters set values for easy access

parameter

//This always/case statement contains info for the different instruction

always @ (posedge clock, negedge reset)

begin
if (rerun == 0)
stage <= reset;
else
begin
case (stage)
reset:
stage <= fetch:
fetch:
begin
stage <= exi;
end
ex1:
begin
case (inst)
‘INST_LDAR: stage <= ex2;
INST_LDAA_IMM:
“INST_STAR: stage
“INST_ADDA: stage
INST_SUBA: stage
“INST_BNDA: stage
INST_ORRA: stage
‘INST_CMPA: stage
“INST_COMA: stage
INST_INCA: stage
‘INST_LSLA: stage
“INST_LSRA: stage
‘INST_ASRA: stage <=
INST_OJMP: stage
“INST_JCS: stage
“INST_JCC: stage
“INST_JEQ: stage
default: stage <= reset;
endcase
end
ex2:
stage = fercn:
endcase
end
ena

//Tnis always/case statemsnt contains info for exl and ex2

=lways @ (stage)
begin
case (stage)
reset:

2 load -
alu_ctrl =
addr_mux_sel = reset:

alu_ctrl = 0;

end
exl:
begin
case (inat)
*INST_LDEA:

alu_ctrl
end

11

*INST_LDAA_TMM:

alu_otrl

ena
*INST_STHRA:
begin
acea load =
pc_inc = O
pC_load = 1:
mar_load

c_load = 1:
z_load
alu_ctrl
addr_mux_sel

*INST_ADDA:
begin
acea_load
pc_inc = 07
pc_load = 1
mar_load =
ir load = 1
mem_w = 1;
c_load
2_load
alu ctrl
addr_mux_sel
end
*INST_SUBA:

mem_w =
c_load
z_load = 1
alu_ctrl

c_load = 0
z load = ©

alu_ctrl = "ALU_COMA;

addr_mux_sel

end
*INST_INCA:
begin
acea_load =
pc_inc = 1;

addr mux_sel
end
‘INST_L3LA:

addr_mux_sel
ena

*ALU_LOAD;
addr_mux_sel = pc;

Do

D

pci

“ALU_INCA:

pes

‘ALU_LSIA:

pci

12

*INST_LSRA:
begin
acca_load = O;

alu ctrl = ALU_LSRA;
addr_mux_sel = pe;
nd
*INST_ASRA:
begin
acca_load = 0;
pc_inc

¢ load = o;
z_load = 0;
alu_ctrl = "ALU RSRA;
addr_mux_sel = pc;
end
*INST_oue:
begin

pc_load = 0
mar_load
ir Toad = 1;

alu_ctrl = o;
pe:

alu_ctrl = o
addr_mux_sel = pc;

ena

else

begin
acca_load = 1
po_inc = 1;
pc_load =
mar_load =1;
ir_load
mem w = 1:
c_load = 1;
z_load = 1:
alu_ctrl
addr_mux_sel = pe;

13

defaulc:
begin
acca_load = 1;

addr_mux_sel
end
endcase
end

reset;

exz:
begin
case (inst)
*INST_LDAR:
begin

acca load =
pc_inc = 1;
pe_load = 1
mar_load
ir load = 1
mem_w =
c_load = 1:
z_load
alu_ctrl = "ALU_LOAD:
addr_mux_sel = maz:

en
*INST_STAR:
begin
acca_load = 1;
pe_inc = 1
pe_load = 1:
mar_load =1;
ir Ioad = 1:
mem w = 0;
c_load = 1;
2 load = 1:
alu ctrl
addr_mux_sel

mar;

en
*INST_ADDA:
begin
acca_load
pc_inc = 1;
pc_load
mar load
ir_load = 1;
mem w = 1
c_load = 0;
z_load = 0:
alu ctrl = ‘ALU ADDA;
addr_mux_sel = mar;
end
*INST_SUBA:
begin
acca_load
pc_inc = 1;
pc_load = 1;
mar_load =1:
ir load = 1;
mem w = 1;
c_load
z_load = 0
alu_ctrl = “ALU_SUBA:
addr_mux_sel = mar;
end
~INST_ANDA:
begin
acca_load
pc_inc = 1:
pe_load = 1;
mar_load —1;
ir load = 1;
mem w = 1;
c_load
z_load = 0;
alu_ctrl = “ALU_ANDA:
addr_mux_sel = mar;

begin

addr_mux_sel = mar:
end
*INST_CMPA:

alu_ctrl = "ALU_SUBA;
addr_mux_sel = maxr;

ena

default:

begin
acca_load =
pe ine = 1
pe_load = 0
mar_load
ir load = 1

addr_mux_sel = resec;

end
endcase
end
endcasze
end
endmodule

Figurel9: Control Unit Code

14

Table 1: ALU Control Operations

| | Instruction | Operation (Mnemonic)

0 | nop Do nothing, (No Operation)

| | LODA addr Loads ACCA with the value in memaory at address addr. C stays the same,
2 changes. (Load ACCA [rom memory)

2 | LDDA_IMM #num | Loads ACCA with num, the value in memory at the address immediately
following the LDAA #num command. C stays the same, Z changes. (Load
ACCA with an immediate)

3 | 8TAL addr Stores the value in ACCA at memory address addr. C stays the same, Z
changes. (Store ACCA in memory |

4 | ADDA addr Adds the value in memory location addr to the value in ACCA and saves
the result in ACCA. C and Z change, [Add ACCA and value in memory)

5 | SUBA addr Subtracts the value in memory location addr from the value in ACCA and
saves the result in ACCA. C and Z change. (Subtract value in memory
from ACCA)

6 | ANDA addr Perform a logical AND of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical AND of ACCA and value in memory)

7 | ORAL addr Perform a logical OR of the value in memory location addr with the value
in ACCA. Save the result in ACCA. C stays the same, Z changes. (Logical
OR of ACCA and value in memory)

& | CMPA addr Compare ACCA to value in addr. This is done by subtracting the value
in addr from ACCA. ACCA does not change. € and Z change. (Compares
ACCA to the value in addr)

4 | COMA Replace the value in ACCA with its one’s complement. C is set to 1 and
2 changes. (Compliment ACCA)

| A | INCA | Increment value in ACCA. C stays the same and Z changes. (INCA ACCA) |
[B | LsLa | Logical shift left of ACCA. € and Z change. (Logical shift left ACCA) |
| C | LsraA | Logical shift right of ACCA. € and Z change. (Logical shift right ACCA) |

I | ASRA Arithmetic shift right of ACCA. C and Z change. (Arithmetic shift right
ACCA)

E | JMF addr Jumps to the instruction stored in address addr. The PC is replaced
with addr. C and Z stay the same. (Jump)

F | JCS addr Jumps to the instruction stored in address addr if ¢ = 1. If C iz not set,
continue with next instruction. € and Z stay the same. (Jump if carry
ot

1) | JCC addr Jumps to the instruction stored in address addr if O = 0. If Cis set,
contine with next instruction. € and Z stay the same, (Jump if carry
not set)

11 | JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is not set,
continie with next instruction. € and Z stay the same. (Jump if Z set)

15

16
VI. REFERENCES
Content:

Brown, Stephen, and Zvonko Vranesic. Fundamentals of Digital Logic with Verilog Design. 3rd ed. New York: McGraw Hill, 2014. Print.

Erives, Hector. EE 231 Digital Electronics Lab. N.p., Aug. 2015. Web. 3 Dec. 2015. <http://www.ee.nmt.edu/~erives/231L_15/EE231L.html>.

Images:
Erives, Hector. EE 231 Digital Electronics Lab. N.p., Aug. 2015. Web. 3 Dec. 2015. <http://www.ee.nmt.edu/~erives/231L_15/EE231L.html>.
https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/4-to-1_multiplexer.svg/350px-4-to-1_multiplexer.svg.png

http://www.ee.nmt.edu/~elosery/fall_2009/ee231L/lab5/imgl.png

https://startingelectronics.org/software/\VHDL-CPLD-course/tut9-SR-latch/

