
1

 Making an Eight-Bit Computer:
Using Verilog and Assembly Coding Styles

Courtney Johnson

New Mexico Tech

Electrical Engineering Dept.

Socorro, NM

cjohnson@nmt.edu

Abstract—Using Verilog code, an eight-bit computer was

created with its own unique assembly language to produce

specific light patterns. To do this, computer components such as

an arithmetic logic unit, a control unit, and multiple registers

were written and connected using a block diagram file within

Altera’s computer program Quartus II. Each computer

component’s logic was navigated using a finite state machine

(FSM) and fed through a series of registers and commands to

create an output. The output was the successful interaction of all

the computer components and was measured with the use of LED

lights on a Field-Programmable Gate Array (FPGA).

Keywords— assembly language, arithmetic logic unit, control

unit, field-programmable gate array, finite state machine, registers

I. INTRODUCTION

 The microcomputer designed in this final project uses

eight-bit logic and operation codes (op codes) to perform

functions. To test the functionality of the computer, assembly

language was written to implement a code which would cycle

through LED’s on an FPGA. This was done using a block

diagram, as seen in Figure 7.

 The computer was built using a control unit, an ALU,

registers, a clock divider, a multiplexer, and a memory

component, as seen in Figure 1. The control unit was the

source of instructions via an FSM. Two case statements were

used to implement the fetch, reset, execution 1, and execution

2 stages. The control unit also controls different load signals

within the computer to allow for complete command of

registers. When an instruction is fed into the control unit, it

uses the case statement to determine which command is being

fed in and uses that feedback to switch into another case

statement and begin the executables. Once in either execution

state, a series of signals are either turned on or off to prepare

the ALU and the other registers. The ALU performs the logic

for the instruction that is being sent to it. Its output is then fed

to the appropriate registers. There are five eight-bit registers

and they are all used to navigate the current instruction, as

well as store and access memory. The Program Counter (PC)

register stores the current location in the program memory.

The Memory Addressing Register (MAR) collects data from

arbitrary memory without losing the current memory address

spot pointed to by the PC register. The Accumulator A register

(ACCA) serves as temporary data storage for arithmetic

operations. The Instruction Register (IR or INST) stores

instructions for the executables in the FSM. The C and Z

registers are one bit registers used to store the carry and zero

flags, respectively, from the ALU operations. A clock divider

is used to slow the cycle of the FPGA from 50 MHz to

approximately 100 Hz to make the output display slow enough

to be seen. The multiplexer is used to select where data is

going currently and allows for storage into memory. The

memory block component is a series of addresses which hold

op codes for the different instructions. The memory unit is the

basis for the light program because, as the pc register shifts to

a new memory address and reads it, the memory component

tells the computer which command it must use to continue the

program.

Figure 1: Simple Computer

 To prove that the different components work together, two

methods of observation were implemented. On the computer,

a waveform was generated to show the values of all

component inputs and outputs. The purpose of this is to allow

for a step-by-step logic check of each function. After the

waveform was checked for accuracy, the program was

2

downloaded and run on an FPGA. With successful

programming and pin assignment, the onboard LEDs were

illuminated in the desired pattern. This result can be

interpreted as a successfully connected eight-bit computer.

The code for all portions of the computer can be found in the

Appendix, Figures 10-19.

II. BACKGROUND

A. Assembly Language

Assembly is one of the most basic forms of computer
programming which allows the user to breakdown processes to
very basic steps. In assembly language, a programmer is able
to directly manipulate how the processor stores information.
This is done with the use of very simple digital logic in the
forms individual commands interacting with the system’s
memory and registers.

B. Digital Logic

Digital logic is the backbone of all electric devices. 1’s
(high or on) and 0’s (low or off) are used to signify the most
basic form of logic. Using 1‘s and 0’s in the form of logic
represents patterns and signals which are used to communicate
with other electronic devices. Circuits and logic gates are
created using these simple strings of 1’s and 0’s which are the
fundamentals of the electronic world.

C. Field-Programmable Gate Arrey (FPGA)

 An FPGA is a kind of Programmable Logic Device or

PLD. PLD’s consist of a series of programmable switches

which allow user interface to control the function of a device.

These switches are the internal circuitry of such devices as

PLG’s and FPGA’s. In general, FPGA’s contain a large

number of small logic circuit elements which can be

connected and controlled with the use of the onboard logical

switches. The setup of these devices makes them widely

useful in a variety of tailored situations. The specific FPGA

used in this experiment is the De0-Nano from Terasic. The

layout can be seen in Figure 2.

Figure 2: De0-Nano Layout

D. Arithmetic Logic Unit (ALU)

 An ALU is a kind of logic circuit which performs various

Boolean and arithmetic operations. This is useful because it

allows for a user to create different functions that the ALU can

perform such as addition and subtraction, logical and bitwise

operations, such as AND and OR, and data shifts to name a

few. As seen in Figure 3, the ALU takes in two different data

sets and an instruction. It performs the given task and outputs

the result, c, and z flags based upon the arithmetic operation.

Figure 3: Arithmetic Logic Unit

E. Finite State Machine (FSM)

 A FSM is a sequential circuit which is generally depicted

in a state diagram. State diagrams visually show how the logic

of the circuit works. If an input is a 1, then it may go to one

state, but if it is a 0, then it may go to another or cycle through

its present state. FSM’s generally have fetch, reset, and

executable states, as seen in Figure 4. The fetch state awaits

instruction to determine which function is desired. After the

instruction is chosen, the fetch state prepares for its execution

state(s). For each op code the control unit must change signals

within the machine to properly parse through memory and

perform the task at hand. The final option within this system is

a reset which sets all applicable one-bit inputs to 1 (as they are

active-low) and changes the current memory address to 0xFF

so that when the program begins, it begins at 0x80, the

location of the start of the program.

Figure 4: Finite State Machine

F. Latches and Registers

A latch is a memory element built with NOR or NAND gates

which use set and reset signals to change the state of the

circuit. A basic latch, shown in Figure 5, is a circuit in which

3

two NOR gates are connected. The output of a latch can be

saved as memory. Gated latches are basic latches which are

controlled by a clock upon either a rising or falling edge. A

flip-flop is another name for a gated latch. A register is a flip-

flop which stores one bit of information. Registers can be used

in conjunction with other registers to allow for larger amounts

of bitwise storage.

Figure 5: Basic SR Latch

G. Multiplexers

 A multiplexer is implemented when there are a number of

input possibilities and only one output value allowed. When a

multiplexer is present, a computer is able to decide exactly

which of the different options it wants to use to access data. It

works by using input signals to generate an output signal

based upon the state of one of the inputs. For example, Figure

6 shows a four-to-one multiplexer. When a certain two bit

value is passed in through the select line, one of the four

possible inputs is selected and passed through to the output.

Figure 6: Four to One Multiplexer

H. Control Unit

 A control unit takes in simple inputs and determines the

desired functions which must be used to output a desired

result. To make this happen, an FSM is used to navigate

sequential logical circuits and pathways, using fetch, reset,

ex1 and ex2. The control unit can be seen in Figure 1, on the

left side of the image. It shows how the different signals

interact with the rest of the computer.

III. RESULTS

 An eight-bit computer was designed to use assembly

language and op codes to implement logical programs. This

was proven by the demonstration of a running light program in

which an illuminated LED began on one side of the eight on-

board LEDs and moved through to the other side. As the

program continued, the previous LED was turned off and the

next was turned on sequentially, moving from the first to last

LED and back to the first once more, as seen in Figure 9 in the

Appendix. The pattern continued until disrupted by the reset

signal, assigned to one of the push buttons on the FPGA. By

using op codes stored in memory, the computer worked with

its components to send information throughout the computer

to output the correct sequence. When the program began, the

PC register pointed to the first memory address. Within that

address was the instruction LDAA_IMM which immediately

loads the next value. For this to happen, the computer must

pass the relevant information through the control unit to allow

it to select from one of its potential functions (which can be

found in Table 1 in the Appendix).To illuminate an LED, a

value, in this case (01)16, was placed in the next accessed

memory address. The following memory address contained

the op code to store ACCA, which stores the previously

loaded value into memory. The last of this basic sequence is a

left shift of the data, which pushes all of the numbers to the

left, filling a 0 where there is no data. This is done with the

command LSLA. After the value is stored in ACCA, the next

memory address contains the op code to output to the LEDs at

value 8’h00 (as designated in the memory file). After the

output is seen, memory continues to cycle through storing the

1, left shifting with a zero pad, and outputting the shifted

value. Once the program reaches the eighth repetition, it must

use the JMP operation to jump back to the beginning of the

program to allow it to run continuously.

 To prove that is output is logically correct, a waveform file

was created. While reset is high, the program can run. This

happens because of the active low nature of reset. In looking

at output, the binary values correspond to the state of the lights

in which one light is on and seven are off. In the individual

output values, each high value corresponds to when that LED

is illuminated. ACCA shows the values at each stage of the

pattern, as the 1 in an eight-bit number shifts throughout the

different places. Data and inst both show how the computer

moves through the instructions and the different stages of the

FSM (fetch, ex1, and ex2). Pc_out shows the different places

in memory that the program accesses as it runs through the

entire program and jumps back to the start.

IV. CONCLUSION

Over the course of one semester, an eight-bit computer was
constructed and interconnected in the style of Verilog coding.
With the use of assembly language and op codes, the computer
successfully accessed memory, an arithmetic logic unit, a
multiplexer, and a control unit to perform a given program. A
running light program was designed for this project as a
demonstration of success. This computer worked successfully

4

and displayed a running light program on the onboard LED
lights on the FPGA.

5

V. APPENDIX

Figure 7: Block Diagram

Figure 8: Waveform File For Running Lights

Figure 9: Visual Representation of Running Light Program

6

Figure 10: Z Register Code

Figure 11: C Register Code

7

Figure 12: Runner Code

8

Figure13: ACCA Register Code

Figure14: INST Register Code

9

Figure 15: MAR Register Code

Figure16: PC Register Code

Figure17: 4 to 1 Multiplexer Code

10

Figure18: Arithmetic Logic Unit Code

11

12

13

14

Figure19: Control Unit Code

15

Table 1: ALU Control Operations

16

VI. REFERENCES

Content:

Brown, Stephen, and Zvonko Vranesic. Fundamentals of Digital Logic with Verilog Design. 3rd ed. New York: McGraw Hill, 2014. Print.

Erives, Hector. EE 231 Digital Electronics Lab. N.p., Aug. 2015. Web. 3 Dec. 2015. <http://www.ee.nmt.edu/~erives/231L_15/EE231L.html>.

Images:

Erives, Hector. EE 231 Digital Electronics Lab. N.p., Aug. 2015. Web. 3 Dec. 2015. <http://www.ee.nmt.edu/~erives/231L_15/EE231L.html>.

https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/4-to-1_multiplexer.svg/350px-4-to-1_multiplexer.svg.png

http://www.ee.nmt.edu/~elosery/fall_2009/ee231L/lab5/img1.png

https://startingelectronics.org/software/VHDL-CPLD-course/tut9-SR-latch/

