
Copyright © 2013 Pearson Education, Inc.

CHAPTER 3

CONTROL STRUCTURES AND DATA FILES

Copyright © 2013 Pearson Education, Inc.

Algorithm Development

•Top-down design
This approach presents a “big picture” description of the
problem solution in sequential steps. The description of
the problem is refined until the steps are language
statements.

•Refinement with Pseudocode and Flowcharts
The pseudocode uses English-like statements to describe
the steps of the program.
The flowchart uses a diagram to describe the steps

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Structured Programming

•Sequence
A sequence contains steps that are performed one after
another.

For example the flowchart for a program that is used to
compute the velocity and acceleration of an aircraft in
described next

Copyright © 2013 Pearson Education, Inc.

Execution
of program

Copyright © 2013 Pearson Education, Inc.

Structured Programming

•Selection
A selection structure contains a condition that can be
evaluated as either true or false:

If the condition is true one statement(s) are
executed;

if the condition is false another statement(s) are
executed

For example suppose we have values for a division
operation. Before we compute the division we want to
make sure that the denominator is not zero

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Structured Programming

•Repetition
The repetition structure allows us to repeat (or loop
through) a set of steps as long as a condition is true

For example we might want to compute a set of velocity
values that correspond to different times, i.e. 0, 1, 2,… 10
seconds.

We do not want to develop a sequential structure that has
a statement to compute the velocity for time of 0, another
for time of 1, and so on.

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Conditional Expressions

•Relational Operators
The relational operators that can be used to compare two
expressions in C are:

< is less than
<= is less than or equal to
> is greater than
>= is greater than or equal to
== is equal to
!= is not equal to

Copyright © 2013 Pearson Education, Inc.

Conditional Expressions

•In C, a true condition is assigned a value of 1 and a false
condition is assigned a value of zero. Therefore, the
following statement is valid:

d = b > c;

If b>c, the the value of d is 1; otherwise the value of d is
zero.

Consider the statement:

if(a)
count++;

If the condition value is zero, then the condition is
assumed false; and assumed true otherwise.

Copyright © 2013 Pearson Education, Inc.

Logical Operators

•Logical operators compare conditions, not expressions. C
supports three logical operators:

and &&
or ||
not !

•For example consider the following condition:

a<b && b < c

This condition is read “a is less than be, and b is less than
c”. If a=1, b=5, c=8, then the condition is true.

Copyright © 2013 Pearson Education, Inc.

Simple if Statements

•An if statement allows us to test condition and them
perform statements based on whether the conditions are
true or false

•The simple if statement has the form:

If(condition) {
statement 1;
statement 2;

…
}

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

If/else Statements

•An if/else statement allows us to execute one set of
statements if a condition is true and a different set if the
condition is false

•The if/else statement has the form:

If(condition) {
statement 1;
statement 2;

}
else
{

statement 3;
statement 4;

{

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Switch Statement

•The switch statement is used for multiple-selection
decision making

•The switch statement has the form:

switch(condition) {
case label_1:

statement s;
case label_2:

statement s;
…

default:
statement s;

{

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

One technique for comparing faces uses ratios of
distances between key points on a face

The ratios might include
distance

between eyes divided by
distance

between the nose and the
chin

Because they are ratios,
they can be computed from
images of different sizes.
There are other challenges if the
head is turned in

 different directions

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

1.Problem Statement:
Given information on three faces, use ratios to

determine the two faces that are the most similar

2.Input/Output Description:

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

3.Hand Example:
Assume the following distances are measured from

three images (in cm):

The ratios of outer eye distance to nose to chin are:

Ratio_1 = 5.7/5.3 = 1.08, Ratio_2 = 6.0/5.0 =
1.20

Ratio_3 = 6.0/5.6 = 1.07

Image 1 Image 2 Image 3

Outer eye distance 5.7 6.0 6.0

Nose to chin distance 5.3 5.0 5.6

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

3.Hand Example:
Assume the following distances are measured from

three images (in cm):

We then compute the absolute difference, so that it is
positive:

diff_1_2 = |1.08-1.20| = 0.12,diff_1_3 = |1.08-1.07|
= 0.01

diff_2_3 = |1.20 – 1.07| = 0.13

Image 1 Image 2 Image 3

Outer eye distance 5.7 6.0 6.0

Nose to chin distance 5.3 5.0 5.6

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

3.Hand Example:
Assume the following distances are measured from

three images (in cm):

We then compute the absolute difference, so that it is
positive:

diff_1_2 = |1.08-1.20| = 0.12,diff_1_3 = |1.08-1.07|
= 0.01

diff_2_3 = |1.20 – 1.07| = 0.13

The difference with smallest value then determines the
two images that are the most similar, using these two
distances. In this case, image 1 and image 2 are the
closest.

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

4. Algorithm Development:
Decomposition Outline
1. Read the distances for each image
2. Compute the ratios for each image
3. Compute the differences between ratios
4. Find the minimum difference
5. Print the corresponding image numbers as the

best match

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Face Recognition

5.Testing
The answer matches the hand example, so we can

then test the program with additional lenghts:

The answer matches the hand example

Copyright © 2013 Pearson Education, Inc.

Loop Structures

•Loops are used to implement repetitive structures. C
contains three different loop structures:
1.while loop
2.do/while loop
3.for loop

•In addition C allows the use of two statements that
modify the flow of the loop structures:
•The break statement which causes the execution of the
program to immediately break the loop structure
•The continue statement which cause the execution of
the current loop to continue

Copyright © 2013 Pearson Education, Inc.

Loop Structures

1.while loop
The general form of a while loop is as follows:

while(condition) {
statement 1;
statement 2;

…
}

Copyright © 2013 Pearson Education, Inc.

Loop Structures

2. do/while loop
The general form of a do/while loop is as follows:

do {
statement 1;
statement 2;

…
} while (condition);

Copyright © 2013 Pearson Education, Inc.

Loop Structures

3. for loop
The general form of a while loop is as follows:

for(expression 1 ; expression 2 ; expression 3) {
statement 1;
statement 2;

…
}

Where expression 1 is used to initialize the loop-
control variable

expression 2 specifies the condition that
should be true to continue the loop repetition

expression 3 specifies the modification to
the loop-control

 variable

Copyright © 2013 Pearson Education, Inc.

Data Files

•Engineering problem solutions often involve large
amounts of data. These data can be output data
generated by the program, or input data that are used
by the program

•It is not generally feasible to print large amounts of data
on the screen, or read large amounts of data from the
keyboard

I/O Statements
Each data file must have a file points associated with it. A
file points is defined with the FILE declaration:

FILE *sensor 1;

* Identifiers that it is a pointer

Copyright © 2013 Pearson Education, Inc.

Data Files

•After a file pointer is defined, it must be associated with
a file name. The fopen function obtains the information
need to relate the file pointer to the file:

sensor = fopen(“sensor1.txt”,”r”);

•To be sure that programs find data files, it is a good
practice to whether a file exists before opening it

file1 = fopen(FILENAME,”r”);
if(file1 == NULL) printf(“Error opening file

\n”);
else {

…
}

Copyright © 2013 Pearson Education, Inc.

Data Files

•We can now read information from data files using the
fscanf statement:

fscanf(sensor,”%lf %lf”, &t , &motion);

•Or write information to data files using the fprinf
statement:

fprinf(sensor,”%f %f \n”, t , motion);

•The fclose statement is used to close a file after
reading/writing to it:

fclose(sensor);

Copyright © 2013 Pearson Education, Inc.

Reading Data Files

•In order to read information form a data file, we MUST
know some details about the file:
1.Name
2.Order of data
3.Data type
4.Special information in the file?

•Data files generally have three common structures:
1.First line contains the number of lines (called records),
i.e. 150 (if there are 150 records in file)
2.Special signals (called trailer or sentinel signal) that
signal the last record, i.e. -999.0 (if all number in the file
are positive)
3.Use an End-of-File indicator which is inserted at the end
of every file

Copyright © 2013 Pearson Education, Inc.

Numerical Technique: Linear Modeling

•Linear modeling is used to find the coefficients of a linear
equation that is the best fit to a set of data points in
terms of minimizing the sum of squared distances
between the line and the data points

Copyright © 2013 Pearson Education, Inc.

Numerical Technique: Linear Modeling

•The best linear fit for the example at hand is:

y = mx + b = 20.83x + 3.76

Copyright © 2013 Pearson Education, Inc.

Numerical Technique: Linear Modeling

•With an equation model, we can compute estimates that
we could not compute with linear interpolation. For
example we can compute an estimate for temperature at
t = 3.3 seconds, and t = 8.0 seconds (this is called
extrapolation)

Copyright © 2013 Pearson Education, Inc.

Numerical Technique: Linear Modeling

•With an equation model, we can compute estimates that
we could not compute with linear interpolation. For
example we can compute an estimate for temperature at
t = 3.3 seconds, and t = 8.0 seconds (this is called
extrapolation)

Copyright © 2013 Pearson Education, Inc.

Numerical Technique: Linear Modeling

•We find the slope and intercept for the best linear fit to
a set of n data points in a least squares sense using the
following equations:

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

•Satellite sensors can be used to measure many different
pieces of information that help us understand more about
the atmosphere, which is composed of layers around the
earth.

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

1.Problem Statement:
Consider a set of data measuring the ozone-mixing

ratio in parts per million volume (ppmv). The data is
nearly linear, and we can use a linear model to estimate
the ozone at altitudes that then the ones for which we
have data.

Use the least-squares technique to determine a
linear model for estimating the ozone-mixing ratio at a
specified altitude

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

2.Input/Output Description:

3.Hand example: Altitude (km) Ozone Mixing Ratio (ppmv)

20 3

24 4

26 5

28 6

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

•We need to evaluate the following equations:

•We compute the values:

m = 0.37 and b = -4.6

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

4. Algorithm Development:
Decomposition Outline
1. Read data file values
2. Compute the slope and y-intercept
3. Print range of altitudes and linear model

Copyright © 2013 Pearson Education, Inc.

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

5.Testing
If we do not define a zone1.txt file, we should get

an error message indicating that we could not open it

Copyright © 2013 Pearson Education, Inc.

Problem Solving Applied:
Ozone Measurements

5.Testing
Using the data from the hand example as the

contents of the file zone1.txt, we get the following output:

The answer matches the hand example

Copyright © 2013 Pearson Education, Inc.

Homework on Chapter 3 is posted on the website:

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

Homework is due in a week

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

