
Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 7
Cell and Structure

Arrays

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Outline

7.1 Concept: Collecting Dissimilar Objects
7.2 Cell Arrays
7.3 Structures
7.4 Structure Arrays
7.5 Engineering Example—Assembling a
Physical Structure

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.1 Concept: Collecting
Dissimilar Objects

This chapter presents two different ways to collect items of
dissimilar types (heterogeneous collections) rather than the
collections seem so far that are homogeneous (all items in
the collection of the same data type)
• Cell arrays are indexed collections of cells – containers that

can encapsulate objects of any size and any type – double,
logical, char, even cells and structures.

• Structures encapsulate the same data types, but access
them by name rather than number

• Structure arrays are indexed collections of structures

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.2 Cell Arrays

A Cell is a MATLAB data type that can act as
a container for any other data types.
A cell array is an array of cells.

To put a MATLAB object into a cell, enclose it
in braces {…}. {[4 5 6]} -> [4 5 6] a cell
containing a vector.

To concatenate multiple objects into a cell
array:
ca = {true, [4 5 6], 'aceg'} -> [1] [4 5 6] 'aceg’

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.2 Cell Arrays

Notice that the MATLAB echo is different
from that produced from a normal object:
vectors have [...] and strings have '…'

Based on these examples, we observe the
following
• A cell array can contain any legal MATLAB
object
•Just as with number arrays, cell arrays can
be created “on the fly“ by assigning values
to an indexed variable

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Cell Data

• Cell arrays can be indexed like vectors to
manipulate the cells. Continuing the
previous example,

 ca(end:-1:1) -> 'aceg' [4 5 6] [1]

• To extract cell contents, index with {…}
 ca{2}-> 4 5 6

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Cell Data

• To store cell contents, also index with {…}
 ca{4} = 'xx' -> 'aceg' [4 5 6] [1] 'xx‘

• You can, but rarely want to, put cells in cell
arrays:

 ca{4} = {'xx'} -> 'aceg' [4 5 6] [1]
{'xx'}

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Cell Data

• Notice the following observations
– When we extract the contents of multiple cells, this results in multiple

assignments being made.

– The multiple assignments CANNOT be made to a single variable.

– Cell arrays can be “sliced” with normal vector indexing assignments.

– The deal(…) function is provided to capture multiple results from
multiple cells.

 [b c]=ca{1:2} or
 [b c]=deal(ca{1:2})

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Cell Arrays

• Containing lists of possible values for
switch/case statements, as we saw in Chapter 4

• Substituting for parameter lists in function calls

• Suppose we are provided with a cell array and
have been asked for a function that find the
length of all the numeric vectors it contains

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using Cell Arrays

function ans=listing7_2(ca)
% count the numbers in a cell array

 ans=0;
 for in=1:length(ca)
 item=ca{in};
 if isnumeric(item)
 ans=ans+prod(size(item));
 end
 end
end

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.3 Structures

A structure is a container for cell-like objects
called fields that are accessed by field name.
For example:
fred.first = 'Fred';
fred.last = 'Jones';
fred.age = 42

creates a structure describing a person named Fred.

We can copy the structure fred to a sally
structure with similar attributes:
sally = fred;
sally.first = ‘Sally';

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.4 Structure Arrays

To create an address book consisting of information for
various people, we can use indexing, concatenation or
the function struct.
• book(1) = fred;
• book = [book sally]
• two_names = struct('first',{'A','B'}, …

 'last', 'Jones', …
 'age', 35)

• book = [book two_names]

Notice that struct(…) takes pairs of entries: a field name
and value. If the value is a cell array, a structure array of
that length is created. Otherwise, the value is applied to all
entries in the structure array.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Operating on Structure Arrays

• The following functions operate on
structure arrays:
– fieldnames(book) returns the field names in a

cell array
– getfield(book(1), field_name) is the same as
book(1).field_name

– isfield(book, field_name) returns true if the
field is a field of the structure

– sa = rmfield(book, field_name) returns a new
structure array with the specified field removed

– book(1) = setfield(book(1), field_name,
value) is the same as book(1).field_name =
value.

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Extracting Values from a
Structure Array

The getfield(…) function accesses fields in
one structure. To extract all the values of a
field from a structure array, you need to
provide a container.
• If the field has numeric values, use:
 ages = [book.age] -> [42 42 35 35];
• If the field has other than numeric values,

use:
 ages = {book.first} ->
 'Fred' , 'Sally' , 'A' , 'B'

Copyright © 2013 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Homework on Chapter 7 is posted on the website:

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

Homework is due within a week

http://www.ee.nmt.edu/~erives/289_F12/EE289.html

	Slide 1
	Outline
	7.1 Concept: Collecting Dissimilar Objects
	7.2 Cell Arrays
	7.2 Cell Arrays
	Accessing Cell Data
	Accessing Cell Data
	Accessing Cell Data
	Using Cell Arrays
	Using Cell Arrays
	7.3 Structures
	7.4 Structure Arrays
	Operating on Structure Arrays
	Extracting Values from a Structure Array
	Slide 15

