
Exam a week from MondayExam a week from Monday

Exam Monday February 20Exam Monday February 20

You will be able to use all the Motorola manuals on the examYou will be able to use all the Motorola manuals on the exam
No calculators will be allowed for the examNo calculators will be allowed for the exam
NumbersNumbers

-Decimal (signed and unsigned)-Decimal (signed and unsigned)
-Hex to Decimal (signed and unsigned)-Hex to Decimal (signed and unsigned)
-Binary to Hex-Binary to Hex
-Hex to Binary-Hex to Binary
-Addition and subtraction of fixed-length hex numbers-Addition and subtraction of fixed-length hex numbers
-Overflow, Carry, Zero, Negative bits of CCR-Overflow, Carry, Zero, Negative bits of CCR

Programming ModelProgramming Model
-Internal registers – A, B, (D=AB), X, Y, SP, PC, CCR-Internal registers – A, B, (D=AB), X, Y, SP, PC, CCR

Addressing Modes and Effective AddressesAddressing Modes and Effective Addresses
-Inherent (INH), Immediate (IMM), Direct (DIR), Extended (EXT), Relative (REL), IDX (Not Indexed Indirect)-Inherent (INH), Immediate (IMM), Direct (DIR), Extended (EXT), Relative (REL), IDX (Not Indexed Indirect)
-How to determine effective address-How to determine effective address

InstructionsInstructions
-What they do – Core Users Guide-What they do – Core Users Guide
-What machine code is generated-What machine code is generated
-How many cycles to execute-How many cycles to execute
-Effect on CCR-Effect on CCR
-Branch instructions – which to use with signed and which with unsigned-Branch instructions – which to use with signed and which with unsigned

Exam a week from MondayExam a week from Monday

Exam Monday February 20Exam Monday February 20

Machine CodeMachine Code
-Reverse Assembly-Reverse Assembly

Stack and Stack PointerStack and Stack Pointer
-What happens to stack and SP for instructions (e.g. PSHX, JSR)-What happens to stack and SP for instructions (e.g. PSHX, JSR)
-How the SP is used in getting to and leaving subroutines-How the SP is used in getting to and leaving subroutines

Assembly LanguageAssembly Language
-Be able to read and write simple assembly language programs-Be able to read and write simple assembly language programs
-Know basic assembler directives – e.g. equ, dc.b, ds.w-Know basic assembler directives – e.g. equ, dc.b, ds.w
-Flow charts-Flow charts

Using DIP switches to get data into the HC12Using DIP switches to get data into the HC12

DIP switches make or break a connections (usually to ground)DIP switches make or break a connections (usually to ground)

5V

Using DIP switches to get data into the HC12Using DIP switches to get data into the HC12

To use DIP switches, connect one end of each switch to a resistorTo use DIP switches, connect one end of each switch to a resistor

Connect the other end of the resistor to +5VConnect the other end of the resistor to +5V

Connect the junction of the DIP switch and the resistor to an input port on the HC12Connect the junction of the DIP switch and the resistor to an input port on the HC12

When the switch is open, the input port sees a logic 1 (+5V)When the switch is open, the input port sees a logic 1 (+5V)

When the switch is closed, the input sees a logic 0 (0V)When the switch is closed, the input sees a logic 0 (0V)

5V

5V

PB0
PB1

Looking at the state of a few input pinsLooking at the state of a few input pins

Want to look for a particular pattern on 4 input pinsWant to look for a particular pattern on 4 input pins

-For example want to do something if pattern on -For example want to do something if pattern on PB3-PB0 is 0110PB3-PB0 is 0110

Don’t know or care what are on the other 4 pins (PB7-PB4)Don’t know or care what are on the other 4 pins (PB7-PB4)

Here is the wrong way to do it:Here is the wrong way to do it:

ldaaldaa PORTBPORTB
cmpacmpa #b0110#b0110
beqbeq tasktask

If PB7-PB4 are anything other than 0000, you will not execute the task.If PB7-PB4 are anything other than 0000, you will not execute the task.

You need to mask out the Don’t Care bits before checking for the pattern on the bits you are interested inYou need to mask out the Don’t Care bits before checking for the pattern on the bits you are interested in

ldaaldaa PORTBPORTB
andaaandaa #b00001111#b00001111
cmpacmpa #b00000110#b00000110
beqbeq tasktask

Now, whatever pattern appears on PB7-4 is ignoredNow, whatever pattern appears on PB7-4 is ignored

Using an HC12 output port to control an LEDUsing an HC12 output port to control an LED

Connect an output port from the HC12 to an LED.Connect an output port from the HC12 to an LED.

Using an output port to control an LEDUsing an output port to control an LED

PA0

Resistor, LED, and
Ground connected internally inside
breadboard

When a current flows
Through an LED, it emits light

Making a pattern on a 7-segement LEDMaking a pattern on a 7-segement LED

Want to make a particular pattern on a 7-segmen LED.Want to make a particular pattern on a 7-segmen LED.

Determine a number (hex or binary) that will generate each element of the patternDetermine a number (hex or binary) that will generate each element of the pattern

-For example, to display a 0, turn on segments a, b, c, d, e, and f, or bits 0, 1, 2, 3, 4, and 5 of PTH. The-For example, to display a 0, turn on segments a, b, c, d, e, and f, or bits 0, 1, 2, 3, 4, and 5 of PTH. The
 binary pattern is 00111111, or $3fbinary pattern is 00111111, or $3f

-To display 0, 2, 4, 6, 8, the hex numbers are $3f, $5b, $66, $7d, $7f.-To display 0, 2, 4, 6, 8, the hex numbers are $3f, $5b, $66, $7d, $7f.

Put the numbers in a tablePut the numbers in a table

Go through the table one by one to display the patternGo through the table one by one to display the pattern

When you get to the last element repeat the loopWhen you get to the last element repeat the loop
 a

 f b
 g

 e c

 d

Flow chart to display the patterns on LEDsFlow chart to display the patterns on LEDs

0x3f
0x5b
0x66
0x7d
0x7f

table X

table_end

Start

Port A
 Output

Point to
First entry

Get entry

Output to
PORT A

Inc pointer X < end

L1:

L2:

ldaa #$ff
staa DDRA

ldx #table

ldaa 0,x

staa PORTA

inx
cpx #end_table
bls L2
bra L1

Program to display the patterns on LEDsProgram to display the patterns on LEDs

; Program to display patterns; Program to display patterns

prog:prog: equequ $1000$1000 orgorg datadata
data:data: equequ $2000$2000 table: table: dc.bdc.b #3f#3f
stack:stack: equequ $3C00$3C00 dc.bdc.b $5b$5b
PORTA:PORTA: equequ $0000$0000 dc.bdc.b $66$66
DDRA:DDRA: equequ $0002$0002 dc.bdc.b $7d$7d

orgorg progprog table_end:table_end: dc.bdc.b $7f$7f
ldslds #stack#stack
ldaaldaa #$ff#$ff
staastaa DDRADDRA

L1:L1: ldxldx #table#table
L2:L2: ldaaldaa 1,x+1,x+

staastaa PORTAPORTA
jsrjsr delaydelay
cpxcpx #table_end#table_end
blsbls L2L2
brabra L1L1

Subroutine “delay”Subroutine “delay”

; Subroutine to wait for 100 ms; Subroutine to wait for 100 ms

delay:delay: pshapsha ; 2 cycles; 2 cycles
pshxpshx ; 2 cycles; 2 cycles
ldaaldaa #250#250 ; 1 cycle; 1 cycle

loop2:loop2: ldxldx #3200#3200 ; 2 cycles; 2 cycles
loop1:loop1: dbnedbne x,loop1x,loop1 ; 3 cycles; 3 cycles

dbnedbne a,loop2a,loop2 ; 3 cycles; 3 cycles
pulxpulx ; 3 cycles; 3 cycles
pulapula ; 3 cycles; 3 cycles
rtsrts ; 5 cycles; 5 cycles

Inner loop takes 3 cycles; is executed 3200 timesInner loop takes 3 cycles; is executed 3200 times

Outer loop takes (2+3X+3) cycles; is executed 250 timesOuter loop takes (2+3X+3) cycles; is executed 250 times

Total number of cycles: 2+2+1+250*(2+3*3200+3)+3+3+5 = Total number of cycles: 2+2+1+250*(2+3*3200+3)+3+3+5 =
2,401,266 cycles2,401,266 cycles

This takes 100 ms with a 24 MHz clockThis takes 100 ms with a 24 MHz clock

I.L.

Programming the HC12 in CProgramming the HC12 in C

Typical C program

#header

main()

function a()

Function b()

preprocessor instructions
(include another files)

“main()” is always the first
 function called

functions are the building blocks
of C

declarations

assignments

functions

statements

statements

statements

Advantages of C over other languages:

 - Natural for the users to use top-down
 planning.
 - Structured programming.
 - Modular design.

Programming the HC12 in CProgramming the HC12 in C

A comparison of some assembly language and C constructsA comparison of some assembly language and C constructs

AssemblyAssembly CC
--
; Use a name instead of a num; Use a name instead of a num /* Use a name instead of a num*//* Use a name instead of a num*/
COUNT:COUNT: EQEQ 55 #define COUNT 5#define COUNT 5

; Start a program; Start a program /* To start a program/* To start a program */*/
orgorg $1000$1000 main()main()
ldslds #$3c00#$3c00 {{

}}

Note that in C, the starting location of the program is defined when you compile the Note that in C, the starting location of the program is defined when you compile the
program, not in the program itself.program, not in the program itself.

Programming the HC12 in CProgramming the HC12 in C

Note that C always uses the stack, so C automatically loads the stack pointer for you.Note that C always uses the stack, so C automatically loads the stack pointer for you.

AssemblyAssembly CC
--
; Allocate 2 bytes for a signed number; Allocate 2 bytes for a signed number /* Allocate 2 bytes for a signed number*//* Allocate 2 bytes for a signed number*/

orgorg $2000$2000 int i;int i;
i:i: ds.wds.w 11 int j = 0x1a00;int j = 0x1a00;
j:j: dc.wdc.w $1a00$1a00

; Allocate 2 bytes for an unsigned number; Allocate 2 bytes for an unsigned number /* Allocate 2 bytes for an unsigned number*//* Allocate 2 bytes for an unsigned number*/
i:i: ds.wds.w 11 unsigned int i; unsigned int i;
j:j: dc.wdc.w $1a00$1a00 unsigned int j = 0x1a00; unsigned int j = 0x1a00;

Programming the HC12 in CProgramming the HC12 in C

AssemblyAssembly CC
--
; Allocate 1 byte for a signed number; Allocate 1 byte for a signed number /* Allocate 1 byte for a signed number*//* Allocate 1 byte for a signed number*/
i:i: ds.bds.b 11 signed char i;signed char i;
j:j: dc.bdc.b $1f$1f signed char j = 0x1f;signed char j = 0x1f;

; Get a value from an address and put of contents; Get a value from an address and put of contents /* Get value form an address and put*//* Get value form an address and put*/
; of address $E000 into variable i; of address $E000 into variable i /* contents of address 0xe000 into i *//* contents of address 0xe000 into i */
i:i: ds.bds.b 11 unsigned char i;unsigned char i;

ldaaldaa $E000$E000 i = *(unsigned char *) 0xE000;i = *(unsigned char *) 0xE000;
staastaa ii

/* Use a variable as a pointer/* Use a variable as a pointer
// unsigned char *ptr, i;unsigned char *ptr, i;

ptr = (unsigned char *) 0xE000;ptr = (unsigned char *) 0xE000;
i = *ptr;i = *ptr;
*ptr = 0x55*ptr = 0x55

In C, the construct *(num) says to treat num as an address, and to work with the contents of that In C, the construct *(num) says to treat num as an address, and to work with the contents of that
address.address.

Programming the HC12 in CProgramming the HC12 in C

Because C does not know how many bytes from that address you want to work with, you need to Because C does not know how many bytes from that address you want to work with, you need to
tell C how many bytes you want to work with. You also have to tell C whether you want to treat tell C how many bytes you want to work with. You also have to tell C whether you want to treat
the data as signed or unsigned.the data as signed or unsigned.

- i = *(unsigned char *) 0xE000; tells C to take one byte from address 0xE000, treat- i = *(unsigned char *) 0xE000; tells C to take one byte from address 0xE000, treat
 it as unsigned, and store that value in variable i.it as unsigned, and store that value in variable i.
- j = *(int *) 0xE000; tells C to take 2 bytes from address 0xE000, treat it as signed,- j = *(int *) 0xE000; tells C to take 2 bytes from address 0xE000, treat it as signed,
 and store that value in variable j.and store that value in variable j.
- *(char *) 0xE000 = 0xaa; tells C to write the number 0xaa to a single byte at- *(char *) 0xE000 = 0xaa; tells C to write the number 0xaa to a single byte at
 address 0xE000.address 0xE000.
- *(int *) 0xE000 = 0xaa; tells C to write the number 0x00aa to 2 bytes starting at- *(int *) 0xE000 = 0xaa; tells C to write the number 0x00aa to 2 bytes starting at
 address 0xE000.address 0xE000.

Programming the HC12 in CProgramming the HC12 in C

AssemblyAssembly CC
--
; To call a subroutine; To call a subroutine /* To call a function/* To call a function */*/

ldaaldaa ii
jsrjsr sqrtsqrt sqrt(i);sqrt(i);

; To return from a subroutine; To return from a subroutine /* To return from a function *//* To return from a function */
ldaaldaa jj return j;return j;
rtsrts

; Flow control; Flow control /* Flow control/* Flow control */ */
bloblo if (i < j)if (i < j)
bltblt if (i < j)if (i < j)

bhsbhs if (i >= j)if (i >= j)
bgebge if (i >= j)if (i >= j)

Programming the HC12 in CProgramming the HC12 in C

AssemblyAssembly CC
--
Here is a simple program written in C and assembly. It simply divides 16 by 2. It does the Here is a simple program written in C and assembly. It simply divides 16 by 2. It does the
division in a function.division in a function.

orgorg $2000$2000 signed char i;signed char i;
i:i: ds.bds.b 11

signed char div (signed char j);signed char div (signed char j);
orgorg $1000$1000 main()main()
ldslds #$3c00#$3c00 {{
ldaaldaa #16#16 i=div(16);i=div(16);
jsrjsr divdiv }}
staastaa ii
swiswi

div:div: asraasra signed char div (signed char j)signed char div (signed char j)
rtsrts {{

return j >> 1;return j >> 1;
}}

A simple program in C and how to compile itA simple program in C and how to compile it

Here is a simple C programHere is a simple C program

#define COUNT 5#define COUNT 5
unsigned int i;unsigned int i;
main()main()
{{

i = COUNT;i = COUNT;
}}

Details of compiling of a program are discussed in detail in the text in Section 5.10. Here is anDetails of compiling of a program are discussed in detail in the text in Section 5.10. Here is an
 outline of the details:outline of the details:

1. Open the Embedded GNU (EGNU) IDE. From the 1. Open the Embedded GNU (EGNU) IDE. From the FileFile -> -> New Source FileNew Source File option. Type in option. Type in
 your C program. Then from the your C program. Then from the FileFile -> -> Save unitSave unit save your file in an appropriate directory. save your file in an appropriate directory.
3. From the 3. From the FileFile menu, select the menu, select the New ProjectNew Project option. Give the project an appropriate name and option. Give the project an appropriate name and
 an appropriate directory. (Note: the project base name must be different form the C filean appropriate directory. (Note: the project base name must be different form the C file
 names.) When the names.) When the Project OptionsProject Options popup dialog appears, click the down arrow below popup dialog appears, click the down arrow below
 Hardware ProfileHardware Profile, and select Dragon12. Click the , and select Dragon12. Click the Edit ProfileEdit Profile button, and make sure the button, and make sure the
 following are set:following are set:

ioports from 0000, length 400ioports from 0000, length 400
eeprom from 400, length c00eeprom from 400, length c00
data from 1000, length 1000data from 1000, length 1000
texttext from 2000, length 2000 from 2000, length 2000
stack at 3c00stack at 3c00

A simple program in C and how to compile itA simple program in C and how to compile it

Then click Then click OKOK button button

4. From the 4. From the ProjectProject menu, select the menu, select the Add to projectAdd to project option, and in the pop-up dialog box, select option, and in the pop-up dialog box, select
the C file you the C file you

 entered in Step 2.entered in Step 2.
5. From the 5. From the BuildBuild menu, select the menu, select the MakeMake option. Under the option. Under the CompilerCompiler window at the bottom of window at the bottom of

the screen, you willthe screen, you will
 hopefully see the message hopefully see the message No errors or warningsNo errors or warnings. If not, you will need to fix the errors.. If not, you will need to fix the errors.
6. If all went well, you should be able to download the compiled file into the 9S12.6. If all went well, you should be able to download the compiled file into the 9S12.

A simple program in C and how to compile itA simple program in C and how to compile it

4. From the 4. From the ProjectProject menu, select the menu, select the Add to projectAdd to project option, and in the pop-up dialog box, select option, and in the pop-up dialog box, select
 the C file you entered in Step 2.the C file you entered in Step 2.
5. From the 5. From the BuildBuild menu, select the menu, select the MakeMake option. Under the option. Under the CompilerCompiler window at the bottom of window at the bottom of
 the screen, you will hopefully see the message the screen, you will hopefully see the message No errors or warningsNo errors or warnings. If not, you will need to fix. If not, you will need to fix
 the errors.the errors.
6. If all went well, you should be able to download the compiled file into the 9S12.6. If all went well, you should be able to download the compiled file into the 9S12.

A simple program in C and how to compile itA simple program in C and how to compile it

If the name of the project is Project.prj, the compiler will generate a file Project.dmp. Here is someIf the name of the project is Project.prj, the compiler will generate a file Project.dmp. Here is some
of the output from The Project1.dmp. There are a couple of things you should note about thisof the output from The Project1.dmp. There are a couple of things you should note about this
output:output:

The first thing the C program does is load the stack pointer.The first thing the C program does is load the stack pointer.
The main() function is the assembly language for the C program you entered.The main() function is the assembly language for the C program you entered.

00002000 <_start>:
 2000: cf 3c 00 lds #3c00 <_stack>
 2003: 16 20 38 jsr 2038 <__premain>

00002006 <__map_data_section>:
 2006: ce 20 42 ldx #2042 <__data_image>
 2009: cd 10 00 ldy #1000 <__data_section_start>
 200c: cc 00 00 ldd #0 <__data_section_size>
 200f: 27 07 beq 2018 <__init_bss_section>

00002011 <Loop>:
 2011: 18 0a 30 70 movb 1,X+, 1,Y+
 2015: 04 34 f9 dbne D,2011 <Loop>

00002018 <__init_bss_section>:
 2018: cc 00 02 ldd #2 <__bss_size>
 201b: 27 08 beq 2025 <Done>
 201d: ce 10 00 ldx #1000 <__data_section_start>

A simple program in C and how to compile itA simple program in C and how to compile it
00002020 <Loop>:
 2020: 69 30 clr 1,X+
 2022: 04 34 fb dbne D,2020 <Loop>

00002025 <Done>:
 2025: 16 20 31 jsr 2031 <main>

00002028 <fatal>:
 2028: 16 20 3c jsr 203c <_exit>
 202b: 20 fb bra 2028 <fatal>
 202d: 20 06 bra 2035 <main+0x4>
 202f: 20 18 bra 2049 <__data_image+0x7>

00002031 <main>:
 2031: 18 03 00 05 movw #5 <__bss_size+0x3>, 1000 <__data_section_start>
 2035: 10 00
 2037: 3d rts

A simple program in C and how to compile itA simple program in C and how to compile it
00002038 <__premain>:
 2038: 87 clra
 2039: b7 02 tap
 203b: 3d rts

0000203c <_exit>:
 203c: 10 ef cli
 203e: 3e wai
 203f: 20 fb bra 203c <_exit>

00002041 <_etext>:
 2041: a7 nop

Pointers in CPointers in C

To access a memory locations:To access a memory locations:

*address*address

You need to tell compiler whether you want to access 8-bit or 16-bit number, signed or unsigned:You need to tell compiler whether you want to access 8-bit or 16-bit number, signed or unsigned:

*(type *)address*(type *)address
-To read from an eight-bit unsigned number at memory location 0x2000:-To read from an eight-bit unsigned number at memory location 0x2000:

x = *(unsigned char *)0x2000;x = *(unsigned char *)0x2000;
-To write an 0xaa55 to a sixteen-bit signed number at memory locations-To write an 0xaa55 to a sixteen-bit signed number at memory locations
 0x2010 and 0x2011:0x2010 and 0x2011:
 *(signed int *)0x2010 = 0xaa55;*(signed int *)0x2010 = 0xaa55;

If there is an address which is used a lot:If there is an address which is used a lot:

#define PORTA (* (unsigned char *) 0x0000)#define PORTA (* (unsigned char *) 0x0000)
x = PORTA; x = PORTA; /* Read from address 0x0000/* Read from address 0x0000 */*/
PORTA = 0x55;PORTA = 0x55; /* Write to address 0x0000/* Write to address 0x0000 */*/

To access consecutive locations in memory, use a variable as a pointer:To access consecutive locations in memory, use a variable as a pointer:

unsigned char *ptr;unsigned char *ptr;
*ptr = 0xaa;*ptr = 0xaa; /* Put 0xaa into address/* Put 0xaa into address */*/
ptr = ptr+2;ptr = ptr+2; /* Point two further into table/* Point two further into table */*/
x = *ptr;x = *ptr; /* Read form address 0x2002/* Read form address 0x2002 */*/

Pointers in CPointers in C

To set aside ten locations for a table:To set aside ten locations for a table:

unsigned char table[10];unsigned char table[10];

Can access the third element in the table as:Can access the third element in the table as:

table[2];table[2];

or asor as

(table+2)(table+2)

To set up a table of constant data:To set up a table of constant data:

const unsigned char table[]={0x00,0x01,0x03,0x07,0x0f};const unsigned char table[]={0x00,0x01,0x03,0x07,0x0f};

This will the tell the compiler to place the table of constants data with the program (which might beThis will the tell the compiler to place the table of constants data with the program (which might be
 placed in EEPROM) instead of with regular data (which must be placed in RAM).placed in EEPROM) instead of with regular data (which must be placed in RAM).

Ponters in CPonters in C

There are a lot of registers (such as PORTA and DDRA) which you will use when programmingThere are a lot of registers (such as PORTA and DDRA) which you will use when programming
 in C. Rather than having. To define the registers each time you use them, you can include a in C. Rather than having. To define the registers each time you use them, you can include a

header file for the HC12header file for the HC12
 which has the registers predefined. Here is the beginning of the header file iodp256.h. You can which has the registers predefined. Here is the beginning of the header file iodp256.h. You can

find the complete filefind the complete file
 on the EE 308 homepage. Here are a few entries from the header file:on the EE 308 homepage. Here are a few entries from the header file:

/* IO DEFINITIONS FOR MCS912DP256
 * Copyright (c) 2000 by COSMIC Software */
 #ifndef _BASE
 #define _BASE 0
 #endif
 #define _IO(x) @(_BASE)+(x)
 #if _BASE == 0
 #define _PORT @dir
 #else #define _PORT
 #endif
 #define uint unsigned int

 /* MEBI Module */
 _PORT volatile char PORTA _IO(0x00); /* port A */
 _PORT volatile char PORTB _IO(0x01); /* port B */
 _PORT volatile char DDRA _IO(0x02); /* data direction port A */
 _PORT volatile char DDRB _IO(0x03); /* data direction port B */

““Interface problems”Interface problems”

