
EE 308 Lab Spring 2008
________________________________________________________________________

EE 308 – LAB 2

ASSEMBLY LANGUAGE PROGRAMMING AND 9S12 PORTS

In this sequence of three labs, you will learn how to write simple assembly language programs for the 
MC9S12 microcontroller, and how to use general purpose I/O (input/output) ports.

Week 1

Introduction and Objectives

This laboratory will give you more experience with the tools we will use this semester ― the 
MiniDRAGON+ evaluation board (EVB), the DBug12 monitor, and the as12 assembler. Be sure to read 
through the entire lab and do the prelab for each section before coming to lab

1. Consider the program in Figure 1:

Figure 1. Demo program for Part 1 of Lab 2.

PreLab

• Handassemble this program, i.e., determine the opcodes the MC9S12 will use to execute this program.

• How many cycles will this take on the MC9S12? (Do not consider the swi instruction.)

• How long in time will this take. (Note: the MC912 executes 24 million cycles per second.)

• What will be the state of the N, Z, V and C bits after each instruction has been executed (ignore the swi 
instruction.)

• What will be in address 0x2000 and 0x2001 after the program executed?

a) Assemble the program using as12. Look at the lst and s19 files. You should be able to relate the opcodes 
from the prelab to the data in the s19 file. 



EE 308 Lab Spring 2008
________________________________________________________________________

b) Trace through the program. Verify that the Z, N, V and C bits are what you expect after each instruction.
c) Look at the contents of address 0x2000. Does the value agree with your answer from the prelab?

d) You could change this program to add rather than subtract by changing the sba instruction to an aba 
instruction. Modify the program, assemble it and load the new program into the MC9S12.

a. Find the address for the sba instruction.

b. In the MC9S12 Core Users Guide, find the op code for the aba instruction.

c. Go to the address of the sba instruction, and change the op code to that of the aba instruction.

d. Run the program again, and verify that the program now adds rather than subtracts.

Consider the program in Figure 2, which is a program to divide a table of ten values by 2.

Figure 2. Demo program for part 2 of lab 2

a)Use the text editor to enter this program, assemble the program into an s19 file.

b)How may cycles will it take to execute the program take on the MC9S12?



EE 308 Lab Spring 2008
________________________________________________________________________

c)How long will it take to execute the program?

d)Use the fill option to change the values in addresses 0x2000 through 0x2FFF to 0xff. Reload the s19 file.

e)Set a breakpoint at repeat.

f)Execute the program again. The program should stop the first time it reaches the repeat label, with 0x0a 
in acc b, and 0x2000 in x.

g)Continue running the program. It should stop each time it gets to the repeat label – b should be 
decremented by one, x should be incremented by one, and there should be a new entry in table2.

Consider the code of Figure 3. Do parts (a) and (b) below before coming to lab

Figure 3. Demo program for part 3 of lab 2.

Question to answer before lab:

• How many cycles will this program take on the MC9S12? (Again, ignore the swi instruction.)

• How long will it take to execute this program?

• Use a text editor to enter the code into a program – you will have to add org statements and other 
assemble directives to make the program work.

a) Assemble the program and run it on the HC12. How long does it take to run?
This time should match your answer to part (a)



EE 308 Lab Spring 2008
________________________________________________________________________

WEEK 2

Introduction and Objectives

The purpose of this laboratory is to write a few assembly language programs and test them on your 
MC9S12.

PreLab

Make sure you have the programs written and clearly thought out before you come to the lab. You should 
put all your code starting at memory location 0x2000. You are encouraged to bring the programs in on a 
disk.

The Lab

As in last week’s lab you will write some programs in assembly language and run the programs on the 
MC9S12. Write the program in Figure 1 and add necessary instructions to make it run.

The MniDRAGON+ has a sevensegment LED display connected to the MC9S12 Port H.
A sevensegment display looks like this:

On the MiniDRAGON+, the a LED is connected to bit 0 of Port H, the b LED is connected to bit 1 of Port 
H, etc. (Bit 7 of Port H is connected to an infrared detector; it is not used to manipulate the seven segment 
LED display.) To display the number 3 on the LEDs, you need to turn on segments a, b, c, d and g. To do 
this, you need to write a 010011112, or 0x4f, to the Port H data register. (A 0xCF will also display a 3 on 
the LEDs, because the most significant bit can be either 0 or 1.) The following program will toggle the a 
LED of the seven segment display:



EE 308 Lab Spring 2008
________________________________________________________________________

Figure 1. Demo program for part 2 of lab 2.
b) Test your program on the MC9S12. Trace through the loop to see what is happening.
Note: The program should cause one of the 7segment display to toggle.

c) Modify the code to make all seven segments toggle in an alphabetical order.

d) Write a program to swap the last element of an array with the first element, the next-to-last element with 
the second element, etc. The array should have 0x20 eight-bit numbers and should start at 0x2000.

Check that your program works on the MC9S12. Use the following data for your
test:

e) Write a program which puts the exclusive OR of the eight-bit numbers form memory locations 0x8000 
through 0x8FFF into memory location 0x2003. (This operation is often used to generate a check sum to 
verify data transmission. The sending computer generates and transmits the check sum along with the data. 
The receiving computer calculates the check sum for the received data and compares it with the check sum 
sent by the sending computer. If the two values do not match, then there was an error in the transmission 
(The last byte in a line of an S19 file is a check sum used for this purpose.)



EE 308 Lab Spring 2008
________________________________________________________________________

WEEK 3

Introduction and Objectives

In this week’s lab you will write an assemblylanguage program to display various patterns on the 7segment 
display. You will use the MC9S12’s Port H as an output port to display the patterns, and 2 pushbutton 
switches via analog port ATD0 to decide which pattern to display.

For this week’s lab, you will create programs to write to Port H, and read from the analog port 0. You will 
use information from switches connected to analog port to control the pattern you output on Port H. You 
will test your programs by changing the Port H output by modifying the switch settings connected to analog 
port 0.

PreLab

We want to write a program which will display four different patterns on the seven segment LED display 
connected to Port H. We want to use two input lines to select which of the four patterns to display. To do 
this, we will use bits 1 and 0 of Port B.

Write a program to set up Port H as an 8bit output port, and to implement (i) a binary up counter, (ii) an 
decimal down counter, (iii) a flasher, and (iv) a message scrolling banner.
For the binary up counter, just have Port H count 0, 1, 2, 3, 4, …. This will generate a random looking 
pattern on the LEDs. It should take 128 counts from the time all LEDs are off until the next time all are off. 
Samples from the other sequences that you should generate are shown in Fig. 1. Include an appropriate 
delay (about 250 ms) between changing the pattern so that you can easily and comfortably see them flash. 
Use a subroutine to implement the delay.

Set up Port B as an input port, and use bits 1 and 0 to control which of the Port H functions are performed 
as shown in Fig. 2. You will need to connect DIP switches (from your EE 231 lab kit) to the 
miniDRAGON+ protoboard, and connect the DIP switches to bits 1 and 0 of Port B. (Look at the pinout 
diagram for the 112 pin chip on page 54 of the MC9S12DP256B Device User Guide to determine which 
pins to use.)

When you switch between functions, the new function should start up where it ended when it was last 
activated, so set aside variables to save the states of the various patterns.

Start writing the program before coming to lab. You should at least have an outline (or flowchart) of the 
flow control of the program, and pseudo code for how you plan to implement your functions. Be sure to 
write the program using structured, easy-to-read code.

b) A decimal down counter:

Continue counting down



EE 308 Lab Spring 2008
________________________________________________________________________

c) A flasher:

Repeat the above sequence

d) Generate a message scrolling banner.

Repeat the above message

Figure 1. Samples of the functions to be performed using Port H as an output.

Figure 2. Port B inputs to control the Port A functions.

The Lab

Run your program on the MC9S12. If you have difficulty getting your program to work, start by trying to 
implement one function only – say, the binary counter. Once this works, start working on your next 
functions.

Set a break point at the first line of your delay subroutine. When the breakpoint is reached, check the value 
of the stack pointer, and the data on the stack. Make sure you understand what these mean.

When you get your program to work, have your lab instructor or TA verify the program operation.

The MC9S12 has EEPROM (Electrically Erasable Programmable Read Only Memory) functionality. If you 
put your program into EEPROM the program will remain there when you turn off power.



EE 308 Lab Spring 2008
________________________________________________________________________

The EEPROM is located at address 0x400. You can just change the origin statement of your assembly 
language program, then reassemble, and reload your program. If you type “G 400”, you will run your 
program out of EEPROM, and it should work the same as it did when you ran it out of RAM. (Try it.) You 
can power cycle your board, and then type “G 400”, and again your program will run correctly. (Try it.)

For some applications it would be nice if you could run your program without having to type “G 400” – if 
your board is controlling a robot, and no computer is connected to it, it would be impossible to start the 
program by typing “G 400”. DBug12 has a special mode to allow you to run a program out of EEPROM 
without having to type “G 400”. If you move jumper J9 to the left, and power cycle the board, the 
program will run immediately out of EEPROM. (Try it.) You will notice that the program runs much 
slower – actually, three times slower than it did when you ran it by typing “G 400”. This is because 
DBug12 does some system initialization which is bypassed when you move jumper J7 and run your 
program directly from EEPROM. In particular, the miniDRAGON+ board has a 16 MHz clock, and the 
MC9S12 runs at half the clock frequency, or 8 MHz. The MC9S12 has a built in phases lock loop (PLL) 
which allows the chip to generate a faster clock internally, and run with a 24 MHz frequency. In order to 
get the chip to run at the higher frequency, you must do the initialization which enables the PLL. Here is 
some code which will do that initialization: org $400

Add the above code to your program, right after the “org $400” line and before the first line of your 
program. Load this new code into EEPROM. (Be sure to move jumper J7 to the right in order to get 
back to the DBug12 monitor so you can load new code into memory.) Now move jumper J9 to the left, 
power cycle your board, and your program should run at the same speed it did when starting by “G 400”.

Note: The document “readme_EEPROM.pdf” which came on the miniDRAGON+ CD says that you need 
to convert your S1 code (in the S19 file) to S2 code to successfully load a program into EEPROM. This is 
because the MC9S12 EEPROM must be programmed with an even number of bytes, and must be 
programmed starting at an even address. However, I have had no problem loading a program which starts 
on an odd address or has an odd number of bytes. I think that, when DBug12 sees that a user wants to load 
a program which starts on an odd address or contains an odd number of bytes, it automatically adds the 
bytes needed to make the programming start on an even address or to contain an even number of bytes. If 
you have trouble getting an EEPROM program to load correctly, you should try converting your S1 code to 
S2 code as discussed in the “readme_EEPROM.pdf” document.


