
Freescale Semiconductor
Application Note

AN2882
Rev. 1, 5/2005
Using Real-Time Interrupt on HCS12
Microcontrollers
By Amin Morales

RTAC Americas
Mexico 2004

Introduction

This document is intended to serve as a quick reference for an embedded engineer to get the real-time
interrupt (RTI) module up and running for any HCS12 MCU. Basic knowledge about the functional
description and configuration options will give the user a better understanding on how the RTI module
works. This application note provides examples which demonstrate one use of the RTI module for the
HCS12 Family of microcontrollers. The examples mentioned are intended to be modified to suit the
specific needs for any application.

The example CodeWarrior project files are available as AN2882SW.zip from http://freescale.com.

Description

The RTI is a sub-system of the clock and reset generator module (CRG) shown in Figure 1. The RTI can
be used to generate a hardware interrupt at a periodic rate. If enabled (by setting RTIE=1), this interrupt
will occur at the rate selected by the RTICTL register.
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Freescale Semiconductor Internal Use Only

Preliminary

http://freescale.com

Introduction
Figure 1. System Clocks Generator

The RTI normally uses the oscillator clock as its clock source (OSCCLK), as shown in Figure 2. At the
end of the RTI time-out period, the RTIF flag is set and a new RTI time-out period starts immediately.

OSCILLATOR

PHASE
LOCK
LOOP

EXTAL

XTAL

SYSCLK

RTIOSCCLK

PLLCLK

CLOCK PHASE
GENERATOR

Bus Clock

Clock
Monitor

1

0

PLLSEL or SCM

÷2

Core Clock

COP

Oscillator

Oscillator

= Clock Gate

Gating
Condition

WAIT(CWAI,SYSWAI),
STOP

WAIT(RTIWAI),
STOP(PSTP,PRE),

RTI enable

WAIT(COPWAI),
STOP(PSTP,PCE),

COP enable

WAIT(SYSWAI),
STOP

STOP(PSTP)

1

0

SCM

WAIT(SYSWAI),
STOP

Clock

Clock
(running during

Pseudo-Stop Mode
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

2 Freescale Semiconductor Internal Use Only Freescale Semiconductor

Preliminary

RTI Control and Configuration Registers
Figure 2. Clock Chain for RTI

Writing to the RTI control register restarts the RTI time-out period. If the PRE (enable during pseudo stop)
bit is set, the RTI will continue to run in pseudo-stop mode. This feature can be used for periodic wakeup
from pseudo stop if the RTI interrupt is enabled.

RTI Control and Configuration Registers

This section describes the control and configuration registers of the RTI. More information is available in
the CRG block guide, Freescale document number S12CRGV4. Only the bits which influence
functionality of the RTI module will be described in the following text.

CRG Flags Register (CRGFLG)

This register provides CRG status bits and flags.

Figure 3. CRGFLG Register

OSCCLK

CR[2:0]

COP TIMEOUT

0:0:0
0:0:1

0:1:0

0:1:1

1:0:0

1:0:1

1:1:0

1:1:1

÷ 4

÷ 4

÷ 2

÷ 4

÷ 2

÷ 16384

÷ 4

CR[2:0]

= Clock Gate

WAIT(COPWAI),
STOP(PSTP,PCE),

COP enable

gating condition

RTIF

7

0

PORF

6

0

LVRF

5

0

LOCKIF

4

0

LOCK

3

0

TRACK

2

0

SCMIF

1

0

SCM

0

0

R
W

RESET:

Address Offset: $_03

RTI Flag = 1 RTI time-out has occurred

= 0 RTI time-out has not occurred

RTIF

7

0

PORF

6

0

LVRF

5

0

LOCKIF

4

0

LOCK

3

0

TRACK

2

0

SCMIF

1

0

SCM

0

0

R
W

RESET:

Address Offset: $_03

RTIF

7

0

PORF

6

0

LVRF

5

0

LOCKIF

4

0

LOCK

3

0

TRACK

2

0

SCMIF

1

0

SCM

0

0

R
W

RESET:

Address Offset: $_03

RTI Flag = 1 RTI time-out has occurred

= 0 RTI time-out has not occurred
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

Freescale Semiconductor Freescale Semiconductor Internal Use Only 3

Preliminary

RTI Control and Configuration Registers
CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Figure 4. CRGINT Register

CRG Clock Select Register (CLKSEL)

This register controls CRG clock selection. Refer to Figure 1 for more details on the effect of each bit.

Figure 5. CLKSEL Register

CRG PLL Control Register (PLLCTL)

This register controls the PLL functionality.

Figure 6. PLLCTL Register

0

6

0

0

5

0

0

3

0

0

2

0

0

0

0

RTIE

7

0

LOCKIE

4

0

SCMIE

1

0

R
W

RESET:

Address Offset: $_04

RTI Enable bit = 0 Interrupt requests from RTI are disabled

= 1 Interrupt will be requested whenever RTIF is set

0

6

0

0

5

0

0

3

0

0

2

0

0

0

0

RTIE

7

0

LOCKIE

4

0

SCMIE

1

0

R
W

RESET:

Address Offset: $_04

RTI Enable bit = 0 Interrupt requests from RTI are disabled

= 1 Interrupt will be requested whenever RTIF is set

PLLSEL

7

0

PSTP

6

0

SYSWAI

5

0

ROAWAI

4

0

PLLWAI

3

0

CWAI

2

0

RTIWAI

1

0

COPWAI

0

0

R
W

RESET:

Address Offset: $_05

RTI stops in Wait Mode Bit

0 RTI keeps running in Wait Mode

1 RTI stops

Pseudo Stop bit

0 Oscillator is disabled in Stop Mode

1 Oscillator continues to run in Pseudo Stop Mode

PLLSEL

7

0

PSTP

6

0

SYSWAI

5

0

ROAWAI

4

0

PLLWAI

3

0

CWAI

2

0

RTIWAI

1

0

COPWAI

0

0

R
W

RESET:

Address Offset: $_05

PLLSEL

7

0

PSTP

6

0

SYSWAI

5

0

ROAWAI

4

0

PLLWAI

3

0

CWAI

2

0

RTIWAI

1

0

COPWAI

0

0

R
W

RESET:

PLLSEL

7

0

PSTP

6

0

SYSWAI

5

0

ROAWAI

4

0

PLLWAI

3

0

CWAI

2

0

RTIWAI

1

0

COPWAI

0

0

R
W

RESET:

Address Offset: $_05

RTI stops in Wait Mode Bit

0 RTI keeps running in Wait Mode

1 RTI stops

Pseudo Stop bit

0 Oscillator is disabled in Stop Mode

1 Oscillator continues to run in Pseudo Stop Mode

CME|

7

1

PLLON

6

1

AUTO

5

1

ACQ

4

1

3

0

PRE

2

0

PCE

1

0

SCME

0

1

R
W

RESET:

Address Offset: $_06

0

RTI Enable during Pseudo Stop Bit

0 stops in Pseudo stop mode

1 running in Pseudo Stop mode

CME|

7

1

PLLON

6

1

AUTO

5

1

ACQ

4

1

3

0

PRE

2

0

PCE

1

0

SCME

0

1

R
W

RESET:

Address Offset: $_06

CME|

7

1

PLLON

6

1

AUTO

5

1

ACQ

4

1

3

0

PRE

2

0

PCE

1

0

SCME

0

1

R
W

RESET:

CME|

7

1

PLLON

6

1

AUTO

5

1

ACQ

4

1

3

0

PRE

2

0

PCE

1

0

SCME

0

1

R
W

RESET:

Address Offset: $_06

0

RTI Enable during Pseudo Stop Bit

0 stops in Pseudo stop mode

1 running in Pseudo Stop mode
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

4 Freescale Semiconductor Internal Use Only Freescale Semiconductor

Preliminary

RTI Control and Configuration Registers
CRG RTI Control Register (RTICTL)

This register selects the timeout period for the real-time interrupt.

NOTE
A write to this register initializes the RTI counter.

Figure 7. RTICTL Register

Table 1. RTI Frequency Divide Rates

RTR[3:0]

RTR[6:4] =

000
(OFF)

001
(210)

010
(211)

011
(212)

100
(213)

101
(214)

110
(215)

111
(216)

0000 (±1) OFF* 210 211 212 213 214 215 216

0001 (±2) OFF* 2x210 2x211 2x212 2x213 2x214 2x215 2x216

0010 (±3) OFF* 3x210 3x211 3x212 3x213 3x214 3x215 3x216

0011 (±4) OFF* 4x210 4x211 4x212 4x213 4x214 4x215 4x216

0100 (±5) OFF* 5x210 5x211 5x212 5x213 5x214 5x215 5x216

0101 (±6) OFF* 6x210 6x211 6x212 6x213 6x214 6x215 6x216

0110 (±7) OFF* 7x210 7x211 7x212 7x213 7x214 7x215 7x216

0111 (±8) OFF* 8x210 8x211 8x212 8x213 8x214 8x215 8x216

1000 (±9) OFF* 9x210 9x211 9x212 9x213 9x214 9x215 9x216

1001 (±10) OFF* 10x210 10x211 10x212 10x213 10x214 10x215 10x216

1010 (±11) OFF* 11x210 11x211 11x212 11x213 11x214 11x215 11x216

1011 (±12) OFF* 12x210 12x211 12x212 12x213 12x214 12x215 12x216

1100 (±13) OFF* 13x210 13x211 13x212 13x213 13x214 13x215 13x216

1101 (±14) OFF* 14x210 14x211 14x212 14x213 14x214 14x215 14x216

1110 (±15) OFF* 15x210 15x211 15x212 15x213 15x214 15x215 15x216

1111 (±16) OFF* 16x210 16x211 16x212 16x213 16x214 16x215 16x216

7

0

RTR6

6

0

RTR5

5

0

RTR4

4

0

RTR3

3

0

RTR2

2

0

RTR1

1

0

RTR0

0

0

R
W

RESET:

Address Offset: $_07

0

RTR[6:4] — Real Time Interrupt Prescale
Rate Select Bits

RTR[3:0] — Real Time Interrupt Modulus
Counter Select Bits

7

0

RTR6

6

0

RTR5

5

0

RTR4

4

0

RTR3

3

0

RTR2

2

0

RTR1

1

0

RTR0

0

0

R
W

RESET:

Address Offset: $_07

0

RTR[6:4] — Real Time Interrupt Prescale
Rate Select Bits

RTR[3:0] — Real Time Interrupt Modulus
Counter Select Bits
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

Freescale Semiconductor Freescale Semiconductor Internal Use Only 5

Preliminary

Algorithms and Software Examples
Algorithms and Software Examples

The flow diagrams in Figure 8 show the RTI configuration routine and the RTI interrupt service routine
algorithms, which are implemented in the example code provide in this application note (AN2882SW.zip).

Figure 8. Configuring RTI and RTI Interrupt Service Function

Example Code

The example code provided in the following shows the use of the RTI module to manage events in time.
In this particular code, a pin on the PORTP is toggled in 512 ms intervals. The RTI frequency is set to
976.56 Hz, which means 1.024 ms interrupt periods. The code consists of two functions: RTIConfig(),
which configures the RTI to the desired frequency, and RTIIsr(), which executes every time the RTI
interrupt period of 1.024 ms elapses. The interrupt service routine, RTIIsr(), maintains a software counter
and toggles a port pin every 500 RTI interrupt periods. A square wave signal with a frequency of
0.97656 Hz can therefore be observed on the port pin. The RTI frequency is based on a clock of 8 MHz,
which comes from the external crystal oscillator.

/**
 * Copyright (c) 2004, Freescale Semiconductor
 * Freescale Willy Note
 *
 * File name : main.c
 * Project name: RTI Demo Software
 *
 * Author : Amin Morales
 * Department : RTAC Americas
 *

RTIConfig()

Configure PSTP,
RTIWAI and

PRE bits

Configure Prescaler
and Modulus counter

in RTICTL register

Enable RTI interrupt

End

RTIConfig()

Configure PSTP,
RTIWAI and

PRE bits

Configure Prescaler
and Modulus counter

in RTICTL register

Enable RTI interrupt

End

RTIIsr()

Clear RTI flag

Execute customer’s
code

End

RTIIsr()

Clear RTI flag

Execute customer’s
code

End
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

6 Freescale Semiconductor Internal Use Only Freescale Semiconductor

Preliminary

Algorithms and Software Examples
 * Description : Configures RTI frequency at 976.56Hz and the
 * RTI Isr toggles a port pin each 500mS
 *
 * History :
 * 07/09/2004 : Release. (A19258)
 */

#include <hidef.h>

/* PORTP definitions */
#define PTP (*((volatile unsigned char*)(0x0258)))
#define DDRP (*((volatile unsigned char*)(0x025A)))
/* RTI definitions */
#define CRGINT (*((volatile unsigned char*)(0x0038)))
#define CRGFLG (*((volatile unsigned char*)(0x0037)))
#define RTICTL (*((volatile unsigned char*)(0x003B)))
/*Global variables*/
unsigned int rticounter;

#pragma CODE_SEG __NEAR_SEG NON_BANKED
/*
 * RTIIsr: Interrupt Service routine for the RTI.
 * Clear RTI flag
 * After 500 RTI Interrupts (~500 ms) toggle PORTP
 * Reset RTI counter to restart cycle
 *
 * Parameters: None
 *
 * Return : None
 */
interrupt void RTIIsr(void) {

 CRGFLG = 0x80; /* clear RTIF bit */

 if(rticounter == 500) {
 rticounter = 0;
 PTP = ~PTP;
 }
 else {

 rticounter++;
 }
 return;
}

#pragma CODE_SEG DEFAULT
/*
 * RTIConfig: Setup of the RTI interrupt frequency, adjusted to get
 * 1.024 ms with 8 MHz crystal oscillator
 * RTI frequency = 8MHz/(8x2^10) = 976.5625 Hz
 * Period of time between interrupts = 1/976.5625 Hz = 1.024 ms
 *
 * Parameters: None
 *
 * Return : None
 */
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

Freescale Semiconductor Freescale Semiconductor Internal Use Only 7

Preliminary

http://www.freescale.com

Conclusion
void RTIConfig(void){

 RTICTL = 0x17; /* set RTI prescaler */
 CRGINT = 0x80; /* enable RTI interrupts */

 return;
}

void main(void){

 DDRP = 0x80; /*Configure pin 7 in PORT P as output*/
 PTP = 0x80; /*Set high pin 7 in PORT P*/

 rticounter = 0; /*Initialize RTI counter*/
 RTIConfig(); /*Configure RTI Interrupt frequency*/

 EnableInterrupts;

 for (;;)
 ; /* Empty Body */
}

Conclusion

The RTI module is available on all HCS12 derivatives: A, B, C, D, DB, DJ, DG, DP, DT, E, H, KG, KT, NE.
The example code provided demonstrates an easy way to configure the RTI to generate an interrupt in
1.024-ms periods and toggle a port pin every 512 milliseconds.

Considerations

Find these and other useful resources on the Freescale Semiconductor home page:
http://www.freescale.com.

• One important consideration when programming the RTI is the frequency of the clock source
because this will impact the RTI frequency.

• MC9S12DJ256 derivative was used to generate the RTI DemoSoftware.

• The RTI DemoSoftware code was developed in CodeWarrior 12 version 3.1

• Refer to CRG block guide, document number S12CRGV4, for more information on RTI.
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

8 Freescale Semiconductor Internal Use Only Freescale Semiconductor

Preliminary

http://www.freescale.com

Conclusion

Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

Freescale Semiconductor Freescale Semiconductor Internal Use Only 9

Preliminary

This page is intentionally blank.

Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

10 Freescale Semiconductor Internal Use Only Freescale Semiconductor

Preliminary

Conclusion

This page is intentionally blank.

Conclusion

Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1

Freescale Semiconductor Freescale Semiconductor Internal Use Only 11

Preliminary

This page is intentionally blank.

AN2882
Rev. 1, 5/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

Freescale Semiconductor Internal Use Only

Preliminary

	Introduction
	Description

	RTI Control and Configuration Registers
	CRG Flags Register (CRGFLG)
	CRG Interrupt Enable Register (CRGINT)
	CRG Clock Select Register (CLKSEL)
	CRG PLL Control Register (PLLCTL)
	CRG RTI Control Register (RTICTL)

	Algorithms and Software Examples
	Example Code

	Conclusion
	Considerations

