
Freescale Semiconductor
Application Note

AN2882
Rev. 1, 5/2005
Using Real-Time Interrupt on HCS12 
Microcontrollers
By Amin Morales

RTAC Americas
Mexico 2004

Introduction

This document is intended to serve as a quick reference for an embedded engineer to get the real-time 
interrupt (RTI) module up and running for any HCS12 MCU. Basic knowledge about the functional 
description and configuration options will give the user a better understanding on how the RTI module 
works. This application note provides examples which demonstrate one use of the RTI module for the 
HCS12 Family of microcontrollers. The examples mentioned are intended to be modified to suit the 
specific needs for any application.

The example CodeWarrior project files are available as AN2882SW.zip from http://freescale.com.

Description

The RTI is a sub-system of the clock and reset generator module (CRG) shown in Figure 1. The RTI can 
be used to generate a hardware interrupt at a periodic rate. If enabled (by setting RTIE=1), this interrupt 
will occur at the rate selected by the RTICTL register. 
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Introduction
Figure 1. System Clocks Generator

The RTI normally uses the oscillator clock as its clock source (OSCCLK), as shown in Figure 2. At the 
end of the RTI time-out period, the RTIF flag is set and a new RTI time-out period starts immediately.
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RTI Control and Configuration Registers
Figure 2. Clock Chain for RTI

Writing to the RTI control register restarts the RTI time-out period. If the PRE (enable during pseudo stop) 
bit is set, the RTI will continue to run in pseudo-stop mode. This feature can be used for periodic wakeup 
from pseudo stop if the RTI interrupt is enabled.

RTI Control and Configuration Registers

This section describes the control and configuration registers of the RTI. More information is available in 
the CRG block guide, Freescale document number S12CRGV4. Only the bits which influence 
functionality of the RTI module will be described in the following text.

CRG Flags Register (CRGFLG)

This register provides CRG status bits and flags.

Figure 3. CRGFLG Register
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RTI Control and Configuration Registers
CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Figure 4. CRGINT Register

CRG Clock Select Register (CLKSEL)

This register controls CRG clock selection. Refer to Figure 1 for more details on the effect of each bit.

Figure 5. CLKSEL Register

CRG PLL Control Register (PLLCTL)

This register controls the PLL functionality.

Figure 6. PLLCTL Register
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RTI Control and Configuration Registers
CRG RTI Control Register (RTICTL)

This register selects the timeout period for the real-time interrupt.

NOTE
A write to this register initializes the RTI counter.

Figure 7. RTICTL Register
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Algorithms and Software Examples
Algorithms and Software Examples

The flow diagrams in Figure 8 show the RTI configuration routine and the RTI interrupt service routine 
algorithms, which are implemented in the example code provide in this application note (AN2882SW.zip).

Figure 8. Configuring RTI and RTI Interrupt Service Function

Example Code

The example code provided in the following shows the use of the RTI module to manage events in time. 
In this particular code, a pin on the PORTP is toggled in 512 ms intervals. The RTI frequency is set to 
976.56 Hz, which means 1.024 ms interrupt periods. The code consists of two functions: RTIConfig( ), 
which configures the RTI to the desired frequency, and RTIIsr( ), which executes every time the RTI 
interrupt period of 1.024 ms elapses. The interrupt service routine, RTIIsr(), maintains a software counter 
and toggles a port pin every 500 RTI interrupt periods. A square wave signal with a frequency of 
0.97656 Hz can therefore be observed on the port pin. The RTI frequency is based on a clock of 8 MHz, 
which comes from the external crystal oscillator.

/**
 * Copyright (c) 2004, Freescale Semiconductor
 * Freescale Willy Note
 *
 * File name      : main.c
 * Project name: RTI Demo Software
 *
 * Author           : Amin Morales
 * Department   : RTAC Americas
 *

RTIConfig( )
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End
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End
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code

End
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Clear RTI flag

Execute customer’s 
code

End
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 * Description    : Configures RTI frequency at 976.56Hz and the
 *                          RTI Isr toggles a port pin each 500mS
 *
 * History           :
 * 07/09/2004     : Release. (A19258)
 */
 
#include <hidef.h>

/* PORTP definitions */
#define PTP      (*((volatile unsigned char*)(0x0258)))     
#define DDRP     (*((volatile unsigned char*)(0x025A))) 
/* RTI definitions */
#define CRGINT   (*((volatile unsigned char*)(0x0038))) 
#define CRGFLG   (*((volatile unsigned char*)(0x0037))) 
#define RTICTL   (*((volatile unsigned char*)(0x003B))) 
/*Global variables*/
unsigned int rticounter;

#pragma CODE_SEG __NEAR_SEG NON_BANKED
/*
 * RTIIsr: Interrupt Service routine for the RTI.
 *  Clear RTI flag
 *  After 500 RTI Interrupts (~500 ms) toggle PORTP
 *  Reset RTI counter to restart cycle
 *
 * Parameters: None
 *
 * Return : None
 */
interrupt void RTIIsr(void) {
  
    CRGFLG = 0x80;  /* clear RTIF bit */
  
    if(rticounter == 500) {
        rticounter = 0;
        PTP = ~PTP;  
    }
    else {

        rticounter++;
    }
    return;
}

#pragma CODE_SEG DEFAULT
/*
 * RTIConfig: Setup of the RTI interrupt frequency, adjusted to get 
 *  1.024 ms with 8 MHz crystal oscillator
 *  RTI frequency = 8MHz/(8x2^10) = 976.5625 Hz
 *  Period of time between interrupts = 1/976.5625 Hz = 1.024 ms 
 *
 * Parameters: None
 *
 * Return : None
 */
Using Real-Time Interrupt on HCS12 Microcontrollers, Rev. 1
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Conclusion
void RTIConfig(void){
  
    RTICTL = 0x17;  /* set RTI prescaler */ 
    CRGINT = 0x80;  /* enable RTI interrupts */ 
    
    return;
}

void main(void){

    DDRP = 0x80;         /*Configure pin 7 in PORT P as output*/
    PTP  = 0x80;           /*Set high pin 7 in PORT P*/

    rticounter = 0;         /*Initialize RTI counter*/
    RTIConfig();           /*Configure RTI Interrupt frequency*/

    EnableInterrupts;               

    for (;;)
        ; /* Empty Body */
}

Conclusion

The RTI module is available on all HCS12 derivatives: A, B, C, D, DB, DJ, DG, DP, DT, E, H, KG, KT, NE. 
The example code provided demonstrates an easy way to configure the RTI to generate an interrupt in 
1.024-ms periods and toggle a port pin every 512 milliseconds.

Considerations

Find these and other useful resources on the Freescale Semiconductor home page: 
http://www.freescale.com.

• One important consideration when programming the RTI is the frequency of the clock source 
because this will impact the RTI frequency.

• MC9S12DJ256 derivative was used to generate the RTI DemoSoftware.

• The RTI DemoSoftware code was developed in CodeWarrior 12 version 3.1

• Refer to CRG block guide, document number S12CRGV4, for more information on RTI.
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