
EE 308 New Mexico Tech Spring 2011

Lab 5 – Part 1

Final Project: Port Expansion for the MC9s12

In this sequence of labs you will learn how to interface with additional hardware and
implement a motor speed control system. At the end of this sequence you will have to
write a report that will be handed separately.

Introduction and Objectives

It is sometimes necessary to add additional memory and/or hardware to a microprocessor
or microcontroller. While interfaces such as the SPI allow you to add some hardware, it
is often necessary to interface directly to the address/data bus. For a microprocessor,
which does not have built-in peripherals, the address/data bus is the only way to add
additional memory or hardware. In this lab you will add an extra output port to your
MC9S12.

Figure 1 shows a block diagram for adding an external output port at address 0x4001 to
the microcontroller. You will implement the port in your Altera FPGA board from EE
231. Note that you will have to connect the 16-bit multiplexed address/data bus and three
control lines from your MC9S12 to your Altera board. You will have the eight bits of
your output port at 0x4001 control the LEDs on your Altera board to verify that the
output port is working. Your Verilog program should also implement an eight-bit input
port at address 0x4000. Connect the four switches on the Altera board to the input port at
0x4000 so you can see that the input port works.

1. Prelab

Write a Verilog program to implement an eight-bit output port at address 0x4001 and an
eight-bit input port at address 0x4000.

2. The Lab

1. Write an Verilog program to implement the expansion ports.

2. Assign the pins for the Altera chip so you can connect the sixteen address/data lines
and three control lines to your MC9S12. Also, assign the pins so that the output port
controls the LEDs on the Altera board, and the four least significant bits of the input port
are connected to the switches of the Altera board. Note that there will be a lot of wires to

EE 308 New Mexico Tech Spring 2011

run, so it is essential that you are neat in your wiring. Be sure to assign the E input to pin
J-13 (CLK3 of the EE231 board) or K-13 (CLK2). These are global clock inputs, which
means the E clock will be routed directly to the clock input of the flip-flops and latches
without any delay of going through other logic.

Figure 1: Block diagram of HCS12 output port at address 0x4001

3. Check the functioning of your port using D-Bug12. When you start your MC9S12
using D-Bug12, the microcontroller is in single chip mode. In this mode you can
manipulate AD-15-0, E, R/W and LSTRB as general purpose I/O lines. You can use the
MM command of D-Bug12 to write data to the output port by changing AD15-0 (PORTA
and PORTB), E, R/W and LSTRB in the same sequence that the MC9S12 would if it
were in expanded wide mode.

(a) Use the DDRE register to make E, R/W and LSTRB output pins. (Note: E is
bit 4 of PORTE, R/W is

EE 308 New Mexico Tech Spring 2011

bit 2 of PORTE, and LSTRB is bit 3 of PORTE.
(b) Bring E low by writing to PORTE.
(c) Put 0x4001 on PORTA and PORTB.
(d) Bring R/W and LSTRB low.
(e) Bring E high.
(f) Put the data you want to write to the port on PORTB.
(g) Bring E low.

4. The program below can be put into EEPROM so you can run your board in wide
expanded mode. To get into wide expanded mode, you will have to put this program into
EEPROM starting at address 0x0400, and then set DIP Switch SW7 so you run your
EEPROM program rather than DBug12. (You cannot run in expanded wide mode using
DBug12, since DBug12 uses the Flash EEPROM in the region 0x4000-0x7fff.)

#include <hidef.h> /* common defines and macros */
#include ”derivative.h” /* derivative−specific definitions */
#include <stdio.h>
#include <termio.h>
#define IN_PORT (*(volatile char *) 0x4000)
#define OUT_PORT (*(volatile char *) 0x4001)
#define BIT7 0x80
#define BIT6 0x40
#define BIT5 0x20
#define BIT4 0x10
#define BIT3 0x08
#define BIT2 0x04
#define BIT1 0x02
#define BIT0 0x01
void INTERRUPT RTI_isr (void) ;
volatile int done ;
main () {

/* Set bus clock to 24 MHz */
asm(sei);
CLKSEL &= ˜0 x80;
PLLCTL |= 0x40;
SYNR = 0x05;
REFDV = 0x01;
while ((CRGFLG & 0x08) == 0) ;
CLKSEL |= 0x80;

/* Put MC9S12 into wide expanded mode */
MODE = 0xe8; /* Expanded wide mode , IV on */
PEAR = 0x0c; /* Turn on R/W, LSTRB, E */
EBICTL = 0x01; /* Use E−clock to control external bus */

EE 308 New Mexico Tech Spring 2011

MISC = 0x03; /* No E−clock stretch, disable ROM from
/* 4000−7FFF */

DDRP = DDRP | 0x0F ; /* Make 4 LSB of Port P outputs */
PTP = PTP | 0x0F; /* Turn off seven−seg LEDs */

/* Setup SCI for using DB12FNP −> printf () */
SCI0BDH = 0x00; /* 9600 Baud */
SCI0BDL = 0x9C;
SCI0CR1 = 0x00;
SCI0CR2 = 0x0C; /* Enable transmit, receive */

/* Set up RTI to increment 0x4001 , and display 0x4000 on the computer
 termina l */
UserRTI = (unsigned short) &RTI isr ;
RTICTL = 0x13; /* 131 ms rate */
CRGINT |= BIT7; /* Enable RTI interrupt */
asm(cli) ;
printf (”hello , world\ r\n”) ;
for (; ;) {

while (! done) ;
printf (”switches = %x , LEDs = %x\r\n” , IN_PORT & 0x0f ,
OUT_PORT & 0xff) ;
done = 0 ;

}
}

void INTERRUPT RTI_isr (void)
{

OUT_PORT = OUT_PORT + 1;
done = 1;
CRGFLG = BIT7;

}

5. An MC9S12 with a functioning expansion port will be available at one of the logic
analyzers during lab this week. The HCS12 is running the following loop:

org $0480
loop: ldx $4000

inc $4001
ldaa $4000
bra loop

The label loop is at address 0x0480.

EE 308 New Mexico Tech Spring 2011

(a) Hand-assemble this program to determine the op codes and op code addresses.

(b) Use the logic analyzer to grab data from the HCS12 address/data bus. Identify the
memory cycle which reads data from address 0x4001, and the memory cycle which
writes data to address 0x4001. The HCS12 address/data bus uses 19 lines – AD15-0 and
the three control line E, R/W, and LSTRB. The HCS12 will either be fetching
instructions from EEPROM (address 0x0400-0x0fff), or accessing the external port at
0x4001. Thus, adress bits D15, D13 and D12 will always be zero. These three lines will
not be connected to the logic analyzer. Figure A-9 of the MC9S12DP256B Device Users
Guide shows the external bus timing. As best you can, measure the following times. The
numbers in parentheses are the labeled numbers on Figure A-9 and Table A-20. Compare
the numbers to the values listed in Table A-20.

i. Cycle time (2)
ii. Pulse width, E low (3)

iii. Pulse width, E high (4)
iv. Address delay time (5)
v. Muxed address hold time (7)

vi. Write data hold time (13)
vii. Read/write delay time (24)

viii. Read/write hold time (26)
ix. Low strobe delay time (27)
x. Low strobe hold time (29)

