
EE 308 Spring 2015

Lab 3 – Part 1
C Language Programming, Interrupts and Timer

Hardware

In this sequence of three labs, you will learn how to write simple C language programs
for the MC9S12 microcontroller, and how to use interrupts and timers.

Introduction and Objectives

The C programming language is used extensively in programming microprocessors. In
this lab you will write some simple C programs which do the things you did in assembly
language in Lab2. For example, Program 1 displays a counting pattern on the LEDs
connected to Port B

1. Prelab

For the prelab write the program for Part 4 of this lab.

2. The Lab

1. Start a new project.

(a) This time, in Project Parameters, select C.

(b) On the C/C++ Options menu, select ANSI startup code, Small memory
model and None for the floating point format.

(c) Select Edit - Standard Settings, Select Target - Compiler for HC12, then
click on Options. Click on the Output tab, and select the Generate Listing File.
The listing file will be called main.lst in the bin subdirectory of the CodeWarrior
project. The listing file includes the C statements as well as the assembly
language which was generated.

CodeWarrior uses a linker file called Project.prm that tells the compiler where to put the
program and data. In the window which lists the project files, select Project Settings -
Linker Files - Project.prm

Find the following lines

RAM = READWRITE 0x1000 TO 0x3FFF ;

EE 308 Spring 2015

and change it to

RAM = READWRITE 0x1000 TO 0x1FFF ;
PROG = READ ONLY 0x2000 TO 0x3FFF ;

Next, find the line

INTO ROM C000 /* , ROM 4000 */ ;

and change it to

INTO PROG /* , ROM 4000 */ ;

Save and close Project.prm

2. Before you can write patterns to the LEDs you need to do the same setup you did with
the assembly program. Translate the assembly set up into C and include it in your
program. Type in Program 1 then click Project, and Make.

3. Look at the file main.lst and try to understand what it does. Note that there may be
some things which do not make sense to you. At the very least, find the assembly
language code which increments Port B.

CodeWarrior generates a file Project.map in the bin subdirectory. The file Project.map
shows the addresses of the C functions and of any global variables. The Project.map file
also shows entry point to the program and the sizes of the functions (in both hex and
decimal) in the OBJECT-ALLOCATION SECTION.

Load the file Project.abs.s19 into your MC9S12 and run it. Verify that the LEDs
increments. Where is the entry point to the program in memory.

4. Using Program 1 as a model, write a C program to implement the program from Lab 2-
Part 3.

Compile and run your program. Have an instructor verify that it works.

5. Look at the Project.map and determine how many bytes the program takes (the length
of the .text segment). Compare this to the length of last week’s program written in
assembly.

6. Put your program in the EEPROM at address 0x0400. Remember, when you put code
into EEPROM you need to do some setup which DBug12 normally does for you. You
need to convert the assembly language code (which multiplies the clock by 6) from Lab2

EE 308 Spring 2015

into C code, and add it as the first lines of you program. There is no C statement to
implement the assembly-language instruction sei. You can use the asm function to insert
this (or any other assembly language instruction) into you program:

_asm(sei) ;

You can implement the other instructions in C by using pointers. For example, the
assembly language instruction:

wait_b3; brclr CRGFLG, %00001000,wait_b3; wait until bit3=1

can be replaced by

while((CRGFLG & 0x08)==0); /* wait until bit 3 of CRGFLG is 1 */

You will want the array which stores the turn signal patterns into the EEPROM (so the
array will not disappear when you turn off power). You will want variables which will
change as the program is executed to be placed in RAM. You can tell the compiler to put
constant data (such as an array of patterns to be display on LEDs) immediately following
the code (so the data will be loaded into EEPROM) by defining the data as type const. An
example of setting up an array of type const is:

const char table [] = {0xaa , 0 xbb , 0 xcc } ;

Now you need to tell the compiler to put the program into EEPROM. You can do that by
using the Project.prm file as follows:
Find the following lines

INTO PROG /* , ROM 4000 */ ;

and change it to

INTO EEPROM;

Finally, change the address in the Project.prm file which points to EEPROM to 0x410.
Save and close Project.prm. When you upload the program and try to start it from
EEPROM, it will try to start from address 0x0400. Use DBug12 to put the instruction
BRA 0x439 at address 0x0400. Now when you set the DIP switches on the Dragon12 to
run from EEPROM, it will execute the instruction at address 0x0400, which will send
control to the C program with the entry points of 0x0439.

EE 308 Spring 2015

Program 1 A C program to increment LEDs connected to Port B.

 #include <hidef.h> /* common defines and macros */
 #include ”derivative.h” /* derivative−specific definitions */
 #define D_1MS (24000/12) // Inner loop takes 12 cycles need 24 ,000 cycles for 1 ms

 void delay (unsigned short num) ;
 main ()
 {

 DDRB = 0xff; /* Make PORTB output */
 PORTB = 0; /* Start with all off */

 while (1)
 {
 PORTB = PORTB + 1;

 delay (50) ;
 }
 }

 void delay (unsigned short num)
 {
 volatile unsigned short i ; /* volatile so compiler does not optimize */

 while (num > 0)
 {

 i = D_1MS;
 while (i > 0)

 {
i=i−1;

}
 num=num−1;
 }

 }

