
EE 308/MENG 483 Spring 2017

Lab 2 – Part 3
Assembly Language Programming and 9S12 Ports

Introduction and Objectives

In this week’s lab you will write an assembly language program to display various
patterns on the eight individual LEDs on your Dragon12-Plus board. The displayed
pattern will be based on the state of bits of the onboard DIP switch. You will also start
using subroutines, and investigate the stack and stack pointer, and learn how to load your
program into EEPROM so the program will remain on your board after a power cycle.

The program for this lab will display four different patterns on the LED display
connected to Port B. You will use the state of a bit of the onboard DIP switch to select
which of the four patterns to display.

1. Prelab

Write a program to set up Port B as an eight bit output port (be sure to disable the seven-
segment displays, and to enable the individual LEDS), as you did in last week’s lab, and
to implement a binary up counter and a Johnson counter based on the state of the DIP
switches. Insert a 100 ms delay between updates of the display. Write the delay as a
subroutine. Be sure to initialize the stack pointer in you program.

(Note: you will be referring to a number of MC9S12 registers in this and future programs.
It is tedious and error-prone to look up and enter the addresses of the registers each time
you write a new program. There is a file when you start a new project called
’directive.inc’ that links to a file which has a list of all registers and their addresses for the
9S12DP256 version of the MC9S12 microcontroller. If you include that file in your
program (by including the line INCLUDE ’directive.inc’ as the first line of your
program), you can refer to all registers by name rather than having to look up their
addresses.)

1. Write a subroutine to implement the binary up counter on PORTB, have the LEDs
count 0, 1, 2, 3, 4, It should take 256 counts from the time all LEDs are off until the
next time all are off again.

2. Write a subroutine to display an eight-bit Johnson counter on PORTB. The procedure
to do this is as follows: shift the present pattern to the right by one bit, the most
significant bit of the next pattern is the inverse of the least significant bit of the present
pattern. The number to convert is in accumulator A, and the next pattern in the sequence
is returned in accumulator A. The subroutine should return with all registers, except A,

EE 308/MENG 483 Spring 2017

the same as when the subroutine was called, so use the stack to save and restore any
registers you need to use to implement the subroutine. The starting pattern is 00000000;

3. Write the program that will display two different patterns on the LED display
connected to Port B. You will use the state of bit 0 of the onboard DIP switch to select
which of the two patterns to display. Write a program to set up Port B as an eight bit
output port (be sure to disable the seven-segment displays, and to enable the individual
LEDs), and to implement a binary up counter and a Johnson counter based on the state of
the DIP switch. Insert a 100 ms delay between updates of the display. Write the delay as a
subroutine. Be sure to initialize the stack pointer in you program. Use two variables to
hold information on the two patterns. Initialize these two variables to the first pattern in
the sequence. You should have a loop which checks the DIP switch connected to Port H.
If bit 7 of the DIP switches is high, end the loop and exit back to DBug-12 with a SWI
instruction. If bit 7 of the DIP switches is low, check bit 0 to determine what pattern to
display next.

PH0 Pattern
0 Binary Up Counter
1 Johnson Counter

For example, if bits 0 of Port H is 1, load accumulator A with the Johnson Counter
variable, call the Johnson Counter subroutine, and save the returned accumulator A into
the Johnson Counter variable. Call the Delay subroutine, then loop back to check the DIP
switches again.

2. The Lab

1. Implement the program described in the prelab. If you have difficulty getting your
program to work, start by trying to implement one function only say, the binary counter.
Once this works, start working on your next functions. Verify that all the functions work
correctly.

2. The MC9S12 has EEPROM (Electrically Erasable Programmable Read Only Memory)
functionality. If you put your program into EEPROM the program will remain there when
you turn off power.

(a) The EEPROM is located at address 0x400. You can just change the origin
statement of your assembly language program, then reassemble, and reload your
program. (Loading programs into EEPROM takes a longer time than loading
programs into RAM. DBug-12 needs to tell the Hyberterminal to wait while it
programs some EEPROM bytes before it sends the next set of bytes to program. It
uses a protocol called Xon/Xoff to do this. Make sure Hyperterminal is set up to
use Xon/Xoff. Use the MD command to verify that your program was correctly

EE 308/MENG 483 Spring 2017

loaded into EEPROM. Type G 400 to run your program out of EEPROM. It
should work the same as it did when you ran it out of RAM. (Try it.)

You can power cycle your board, and then type G 400, and again your program
will run correctly. (Try it. The TBird pattern may not work correctly. The reason
for this and the solution is discussed below.)

For some applications it would be nice if you could run your program without
having to type G 400 if your board is controlling a robot, and no computer is
connected to it, it would be impossible to start the program by typing G 400.
DBug12 has a special mode to allow you to run a program out of EEPROM
without having to type G 400. If you set the two switches on the LOAD DIP
switch to Jump to EEPROM mode (Switch 2 on, Switch 1 off), and power cycle
the board (or push the reset button), the program will run immediately out of
EEPROM. (Try it.)

You will notice that the program runs much slower actually, six times slower than
it did when you ran it by typing G 400. This is because DBug12 does some
system initialization which is bypassed when you run your program directly from
EEPROM. In particular, the Dragon12-Plus board has an 8 MHz clock, and the
MC9S12 runs at half the clock frequency, or 4 MHz. The MC9S12 has a built in
phases lock loop (PLL) which allows the chip to generate a faster clock internally,
and run with a 24 MHz E-clock frequency. In order to get the chip to run at the
higher frequency, you must do the initialization which enables the PLL. Here is
some code which will do that initialization (adapted from the Dragon12-Plus
Reference Manual):

 ; PLL code for 24MHz bus speed from an 8 crystal
sei ; disable interrupts
bclr CLKSEL,%10000000 ; clear bit 7, clk derived from oscclk
bset PLLCTL,%01000000 ; Turn PLL on, bit 6=1 PLL on, =0 off
movb #$05,SYNR ; 5+1=6 multiplier
movb #$01,REFDV ; divisor=1+1=2,8*2*6/2=48MHz PLL

 ; freq, for8MHz crystal
wait_b3 brclr CRGFLG,%00001000,wait_b3 ; wait until bit3=1

bset CLKSEL,%10000000 ; derive clock from PLL

(b) Add the above code to your program, right after the org $400 line and before
the first line of your program. Load this new code into EEPROM. (Be sure to
move SW1 of the LOAD DIP switch down in order to get back to the DBug12
monitor so you can load new code into memory.) Now move SW1 of the LOAD
DIP SWITCH to the up position, power cycle your board, and your program
should run at the same speed it did when running out of RAM.

EE 308/MENG 483 Spring 2017

(c) Another problem with running out of EEPROM is that data which is loaded
when you load your program is not present when you start your program out of
EEPROM after a power cycle. For example, if the TBird pattern is put into RAM,
when you turn power off that pattern is lost, and when you turn the power back on
and start running the program from EEPROM, an incorrect pattern is displayed.
To fix this, put the table into the program section of memory rather than the data
section. In this way, the table is programmed into EEPROM as well your
program. Now if you power cycle the board, the table with the TBird pattern is
still there. When you put a program into EEPROM, only variables which change
should be put into the data section. Also, you need to initialize these variables in
the program rather than using a dc.b directive.

Note: The document readme EEPROM.pdf which came on the DRAGON12-Plus CD
says that you need to convert your S1 code (in the S19 file) to S2 code to successfully
load a program into EEPROM. This is because the MC9S12 EEPROM must be
programmed with an even number of bytes, and must be programmed starting at an even
address. However, I have had no problem loading a program which starts on an odd
address or has an odd number of bytes. I think that, when DBug12 sees that a user wants
to load a program which starts on an odd address or contains an odd number of bytes, into
EEPROM, it automatically adds the bytes needed to make the program start on an even
address or to contain an even number of bytes. If you have trouble getting an EEPROM
program to load correctly, you should try converting your S1 code to S2 code as
discussed in the readme EEPROM.pdf document.

