
• Resets on the HC12
• Introduction to Interrupts on the 9S12
• Huang Sections 6.1-6.3
• MC9S12DP256B Device User Guide

o What happens when you reset the HC12?
o Using the Timer Overflow Flag to implement a delay on the

HC12
o Introduction to Interrupts
o How to generate an interrupt when the timer overflows
o How to tell the 9S12 where the Interrupt Service Routine is

located
o Using interrupts on the HC12
o The 9S12 registers and stack when a TOF interrupt is received
o The 9S12 registers and stack just after a TOF interrupt is

received
o Interrupt vectors for the MC9S12DP256

What Happens When You Reset the HCS12?

• What happens to the HCS12 when you turn on power or push the reset button?

• How does the HCS12 know which instruction to execute first?

• On reset the HCS12 loads the PC with the address located at address 0xFFFE and
0xFFFF.

• Here is what is in the memory of our HCS12:

0 1 2 3 4 5 6 7 8 9 A B C D E F
FFF0 F6 EC F6 F0 F6 F4 F6 F8 F6 FC F7 00 F7 04 F0 00

• On reset or power-up, the first instruction your HCS12 will execute is the one located at
address 0xF000.

Using the Timer Overflow Flag to implement a delay

• The HCS12 timer counts at a rate set by the prescaler:

PR2:0 Divide Clock Freq Clock Period Overflow Period
000 1 24 MHZ 0.042 μs 2.73 ms
001 2 12 MHZ 0.083 μs 5.46 ms

010 4 6 MHZ 0.167 μs 10.92 ms
011 8 3 MHZ 0.333 μs 21.85 ms
100 16 1.5 MHZ 0.667 μs 43.69 ms
101 32 750 MHZ 1.333 μs 87.38 ms
110 64 375 MHZ 2.667 μs 174.76 ms
111 128 187.5 MHZ 5.333 μs 349.53 ms

• When the timer overflows it sets the TOF flag (bit 7 of the TFLG2 register).

• To clear the TOF flag write a 1 to bit 7 of the TFLG2 register, and 0 to all other bits of
TFLG2:

TFLG2 = 0x80;

• You can implement a delay using the TOF flag by waiting for the TOF flag to be set,
then clearing it:
void delay(void)
{

while ((TFLG2 & 0x80) == 0) ; /* Wait for TOF */
TFLG2 = 0x80; /* Clear flag */

}

• If the prescaler is set to 010, you will exit the delay subroutine after 10.92 ms have
passed.

Introduction to Interrupts

Can implement a delay by waiting for the TOF flag to become set:

void delay(void)
{

while ((TFLG2 & 0x80) == 0) ;
TFLG2 = 0x80;

}

Problem: Can’t do anything else while waiting. Wastes resources of HCS12.

Solution: Use an interrupt to tell you when the timer overflow has occurred.

Interrupt: Allow the HCS12 to do other things while waiting for an event to happen.
When the event happens, tell HCS12 to take care of event, then go back to what it was
doing.

What happens when HCS12 gets an interrupt: HCS12 automatically jumps to part of
the program which tells it what to do when it receives the interrupt (Interrupt Service
Routine).

How does HCS12 know where the ISR is located: A set of memory locations called
Interrupt Vectors tell the HCS12 the address of the ISR for each type of interrupt.

How does HCS12 know where to return to: Return address pushed onto stack before
HCS12 jumps to ISR. You use the RTI (Return from Interrupt) instruction to pull the
return address off of the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed onto stack before
jumping to ISR, and pulled off the stack before returning to program. When you execute
the RTI instruction at the end of the ISR, the registers are pulled off of the stack.

To Return from the ISR You must return from the ISR using the RTI instruction. The
RTI instruction tells the HCS12 to pull all the registers off of the stack and return to the
address where it was processing when the interrupt occurred.

How to generate an interrupt when the timer overflows

To generate a TOF interrupt:

Enable timer (set Bit 7 of TSCR1)
Set prescaler (Bits 2:0 of TSCR2)
Enable TCF interrupt (set Bit 7 of TSCR2)
Enable interrupts (clear I bit of CCR)

Inside TOF ISR:

Take care of event
Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Return with RTI

#include "hcs12.h"
main()
{

DDRA = 0xff; /* Make Port A output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
enable(); /* Enable interrupts (clear I bit) */
while (1)
{

/* Do nothing */
}

}

void INTERRUPT toi_isr(void)
{

PORTA = PORTA + 1; /* Increment Port A */
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

How to tell the HCS12 where the Interrupt Service Routine is
located

• You need to tell the HCS12 where to go when it receives a TOF interrupt

• You do this by setting the TOF Interrupt Vector

• The TOF interrupt vector is located at 0xFFDE. This is in flash EPROM, and is very
difficult to change — you would have to modify and reload DBug-12 to change it.

• DBug-12 redirects the interrupts to a set of vectors in RAM, from 0x3E00 to 0x3E7F.
The TOF interrupt is redirected to 0x3E5E. When you get a TOF interrupt, the HCS12
initially executes code starting at 0xFFDE. This code tells the HCS12 to load the program
counter with the address in 0x3E5E. Because this address in in RAM, you can change it
without having to modify and reload DBug-12.

• Because the redirected interrupt vectors are in RAM, you can change them in your
program.

How to Use Interrupts in C Programs
• For our C compiler, you can set the interrupt vector by including the file vectors12.h. In
this file, pointers to the locations of all of the 9212 interrupt vectors are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

#define VECTOR_BASE 0x3E00
#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*
#define UserTimerOvf _VEC16(47)

You can set the interrupt vector to point to the interrupt service routine toi_isr() with the
C statement:

UserTimerOvf = (unsigned short) &toi_isr;

• Here is a program where the interrupt vector is set in the program:

#include <hcs12.h>
#include <vectors12.h>
#include "DBug12.h"
#define enable() _asm(" cli")
#define disable() _asm(" sei")

void INTERRUPT toi_isr(void);
main()
{

DDRA = 0xff; /* Make Port A output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x86; /* Enable timer overflow interrupt, set prescaler

so interrupt period is 175 ms */
TFLG2 = 0x80; /* Clear timer interrupt flag */
UserTimerOvf = (unsigned short) &toi_isr;
enable(); /* Enable interrupts (clear I bit) */
while (1)
{

/* Do nothing - go into low power mode */
}

}

void INTERRUPT toi_isr(void)
{

PORTA = PORTA+1;
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

How to Use Interrupts in Assembly Programs

• For our assembler, you can set the interrupt vector by including the file hcs12.inc. In
this file, the addresses of all of the 9212 interrupt vectors are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

UserTimerOvf equ $3E5E

You can set the interrupt vector to point to the interrupt service routine
toi_isr with the Assembly statement:

movw #toi_isr,UserTimerOvf

• Here is a program where the interrupt vector is set in the program:

#include "hcs12.h"
#define prog $1000

movw #toi_isr,UserTimerOvf ; Set interrupt vector
movb #$ff,DDRA
movb #$80,TSCR1 ; Turn on timer
movb #$86,TSCR2 ; Enable timer overflow interrupt, set

 ;prescaler so interrupt period is 175 ms
movb #$80,TFLG2 ; Clear timer interrupt flag
cli ; Enable interrupts

l1: wai ; Do nothing - go into low power mode */
bra l1

toi_isr:
inc PORTA
movb #$80,TFLG2 ; Clear timer overflow interrupt flag
rts

USING INTERRUPTS ON THE HCS12

What happens when the HCS12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most
interrupts the general mask is the I bit of the CCR. For the TOF interrupt
the specific mask is the TOI bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer
• Done for you in C by the C startup code

2. Write Interrupt Service Routine
• Do whatever needs to be done to service interrupt
• Clear interrupt flag
• Exit with RTI

– Use the INTERRUPT definition in the Gnu C compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt
6. Enable interrupts in general (clear I bit of CCR with cli instruction or
enable() function

Can disable all (maskable) interrupts with the sei instruction or disable()
function.

An example of the HCS12 registers and stack when a TOF
interrupt is received

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

An example of the HCS12 registers and stack just after a TOF
interrupt is received

• All of the HCS12 registers are pushed onto the stack, the PC is loaded
with the contents of the Interrupt Vector, and the I bit of the CCR is
set

HC12 STATE AFTER RECEIVING TOF INTERRUPT

Interrupt vectors for the 68HC912B32

• The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to
0xFFFF.

• These vectors are programmed into Flash EEPROMand are very difficult to change

• DBug12 redirects the interrupts to a region of RAM where they are easy to change

• For example, when the HCS12 gets a TOF interrupt:
– It loads the PC with the contents of 0xFFDE and 0xFFDF.
– The program at that address tells the HCS12 to look at address 0x3E5E and 0x3E5F.
– If there is a 0x0000 at these two addresses, DBug12 gives an error stating that the
interrupt vector is uninitialized.
– If there is anything else at these two addresses, DBug12 loads this data into the PC and
executes the routine located there.
– To use the TOF interrupt you need to put the address of your TOF ISR at addresses
0x3E5E and 0x3E5F.

Commonly Used Interrupt Vectors for the MC9S12DP256

