
• The Real Time Interrupt
• Huang Section 6.6
• CRG Block User Guide

o Exceptions on the 9S12
o Using interrupts on the 9S12
o The Real Time Interrupt on the 9S12

USING INTERRUPTS ON THE 9S12
What happens when the 9S12 receives an unmasked interrupt?

1. Finish current instruction

2. Clear instruction queue

3. Calculate return address

4. Push Return Address, Y, X, A, B, CCR onto stack (SP is decremented by 9)

5. Set I bit of CCR

6. If XIRQ interrupt, set X bit of CCR

7. Load Program Counter from interrupt vector for highest priority interrupt which is
pending

8. The following (from theMC9S12DP256B Device User Guide) shows the exception
priorities. The Reset is the highest priority, the Clock Monitor Fail Reset the next highest,
etc.

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the
processor at a regular interval.

• Information on the Real Time Interrupt is in the CRG Block User Guide

• There are two clock sources for 9S12 hardware.
– Some hardware uses the Oscillator Clock. The RTI system uses this clock.
_ For our 9S12, the oscillator clock is 8 MHz.
– Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow
Interrupt) use this clock.

* For our 9S12, the bus clock is 24 MHz.

• The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the CRGINT
register.

• When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.
– To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG

register.

• The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register. The
RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits are the
Modulus Counter Select bits to provide additional graunularity.

• To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register

– In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to the
RTIF bit of the CRGFLG register.
• The following table shows all possible values, in ms, selectable by the
RTICTL register (assuming the system uses a 8 MHz oscillator):

• Here is a C program which uses the Real Time Interrupt:

#include "hcs12.h"
#include "vectors12.h"
#include "DBug12.h"
#define enable() asm(" cli")
void INTERRUPT rti_isr(void);
main()
{

DDRA = 0xff;
PORTA = 0;
RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;
enable();
while (1)
{

asm(" wai"); /* Do nothing -- wait for interrupt */
}

}
void INTERRUPT rti_isr(void)
{

PORTA = PORTA + 1;
CRGFLG = 0x80;

}

• Note that in the above program, the do-nothing loop has the instruction

asm("_wai"); /* Do nothing -- wait for interrupt */

The assembly-language instruction WAI (Wait for Interrrupt) stacks the registers and
puts the 9S12 into a low-power mode until an interrupt occurs.

• This allows the 9S12 to get into the ISR more quickly (because the time
needed for pushing the registers on the stack has already been done),
and lowers the power consumption of the 9S12 (because it doesn’t have
to execute a continuous loop while waiting for the interrupt).

What happens when an 9S12 gets in unmasked interrupt:

1. Completes current instruction

2. Clears instruction queue

3. Calculates return address

4. Stacks return address and contents of CPU registers

5. Sets I bit of CCR

6. Sets X bit of CCR if an XIRQ interrupt is pending

7. Fetches interrupt vector for the highest-priority interrupt which is pending

8. Executes ISR at the location of the interrupt vector

What happens when an 9S12 exits an ISR with the RTI instruction:

1. If no other interrupt pending,
(a) 9S12 recovers stacked registers
(b) Execution resumes at the return address

2. If another interrupt pending
(a) 9S12 stacks registers
(b) Subtracts 9 from SP
(c) Sets I bit of CCR
(d) Sets X bit of CCR if an XIRQ interrupt is pending
(e) Fetches interrupt vector for the highest-priority interrupt which is pending
(f) Executes ISR at the location of the interrupt vector

Capturing the Time of an External Event

• One way to determine the time of an external event is to wait for the event to occur, the
read the TCNT register:

• For example, to determine the time a signal on Bit 0 of PORTB changes from a high to
a low:

while ((PORTB & 0x01) != 0) ; /* Wait while Bit 0 high */
time = TCNT; /* Read time after goes low */

• Two problems with this:

1. Cannot do anything else while waiting
2. Do not get exact time because of delays in software

• To solve problems use hardware which latches TCNT when event occurs, and generates
an interrupt.

• Such hardware is built into the 9S12 — called the Input Capture System

Measure the time between two events

How to measure ∆t?
Wait until signal goes low, then measure TCNT

while ((PORTB & 0x03) == 0x01) ;
start = TCNT;
while ((PORTB & 0x03) == 0x02) ;
end = TCNT;
dt = end - start;

Problems: 1) May not get very accurate time
2) Can’t do anything while waiting for signal level to change.

Solution: Latch TCNT on falling edge of signal
Read latched values when interrupt occurs

The 9S12 Input Capture Function

• The 9S12 allows you to capture the time an external event occurs on any of the eight
PORTT pins

• An external event is either a rising edge or a falling edge

• To use the Input Capture Function:
– Enable the timer subsystem (set TEN bit of TSCR1)
– Set the prescaler
– Tell the 9S12 that you want to use a particular pin of PORTT for input capture
– Tell the 9S12 which edge (rising, falling, or either) you want to capture
– Tell the 9S12 if you want an interrupt to be generated when the capture occurs

A Simplified Block Diagram of the 9S12 Input Capture Subsystem

INPUT CAPTURE

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

Registers used to enable Input Capture Function

Write a 1 to Bit 7 of TSCR1 to turn on timer

TEN TSWAI TSBCK TFFCA 0x0046 TSCR1

To turn on the timer subsystem: TSCR1 = 0x80;

TOI 0 0 0 TCRE PR2 PR1 PR0 0x0046 TSCR2

Set the prescaler in TSCR2
Make sure the overflow time is greater than the time difference you want to measure

PR2 PR1 PR0 Period (μs) Overflow (ms)
0 0 0 0.0416 2.73
0 0 1 0.0833 5.46
0 1 0 0.1667 10.92
0 1 1 0.3333 21.84
1 0 0 0.6667 43.69
1 0 1 1.3333 86.38
1 1 0 2.6667 174.76
1 1 1 5.3333 349.53

To have overflow rate of 21.84 ms:
TSCR2 = 0x03;

Write a 0 to the bits of TIOS to make those pins input capture

IOCS7 IOCS6 IOCS5 IOCS4 IOCS3 IOCS2 IOCS1 IOCS0 0x0040 TIOS

To make Pin 3 an input capture pin: TIOS = TIOS & ~0X08;

Write to TCTL3 and TCTL4 to choose edge(s) to capture

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A 0x004A TCTL3

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A 0x004B TCTL4

EDGnB EDGnA Configuration
0 0 Disabled
0 1 Rising
1 0 Falling
1 1 Any

To have Pin 3 capture a rising edge:
TCTL4 = (TCTL4 | 0x40) & ~0x80;

When specified edge occurs, the corresponding bit in TFLG1 will be set.
To clear the flag, write a 1 to the bit you want to clear (0 to all others)

C7F C6F C5F C4F C3F C2F C1F C0F 0x008E TFLG1

To wait until rising edge on Pin 3: while ((TFLG1 & 0x08) == 0) ;
To clear flag bit for Pin 3: TFLG1 = 0x08;

To enable interrupt when specified edge occurs, set corresponding bit in TMSK1 register

C7I C6I C5I C4I C3I C2I C1I C0I 0x004C TIE

To enable interrupt on Pin 3: TIE = TIE | 0x08;

To determine time of specified edge, read 16−bit result registers TC0 thru TC7
To read time of edge on Pin 3:

unsigned int time;
time = TC3;

