
• Addition and Subtraction of Hexadecimal Numbers
• Simple assembly language programming
• Huang, Section 2.2
• HC12 Addressing Modes
• Huang, Sections 1.6 and 1.7

o The N, Z, C and V bits of the Condition Code Register (CCR)
o Addition and Subtraction of Hex numbers
o Simple 9S12 programs
o Hex code generated from a simple 9S12 program
o Things you need to know for 9S12 assembly language

programming
o HC12 Addressing Modes
o Inherent, Extended, Direct, Immediate, Indexed, and Relative

Modes
o Summary of 9S12 Addressing Modes

Addition and Subtraction of Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

Condition Code Register Bits N, Z, V, C

N bit is set if result of operation in negative (MSB = 1)
Z bit is set if result of operation is zero (All bits = 0)
V bit is set if operation produced an overflow
C bit is set if operation produced a carry (borrow on subtraction)
Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

C bit set when result does not fit in word
V bit set when P + P = N, N + N = P
N bit set when MSB of result is 1
Z bit set when result is 0

 7A 2A AC AC
+52 +52 +8A +72
 CC 7C 36 1E

C: 0 C: 0 C: 1 C: 1
V: 1 V: 0 V: 1 V: 0
N: 1 N: 0 N: 0 N: 0
Z: 0 Z: 0 Z: 0 Z: 0

Subtraction of Hexadecimal Numbers

C bit set on borrow (when the magnitude of the subtrahend is greater than the minuend)
V bit set when N − P = P, P − N = N
N bit set when MSB is 1
Z bit set when result is 0

 7A 8A 5C 2C
−5C −5C −8A −72
 1E 2E D2 BA

C: 0 C: 0 C: 1 C: 1
V: 0 V: 1 V: 1 V: 0
N: 0 N: 0 N: 1 N: 1
Z: 0 Z: 0 Z: 0 Z: 0

Simple Programs for the HCS12

A simple HCS12 program fragment

org $1000
ldaa $2000
asra
staa $2001

A simple HCS12 program with assembler directives

prog: equ $1000
data: equ $2000

org prog
ldaa input
asra
staa result
swi

org data
input: dc.b $07
result: ds.b 1

HCS12 Programming Model — The registers inside the HCS12 CPU the
programmer needs to know about

How the HCS12 executes a simple program

EXECUTION OF SIMPLE HC12 PROGRAM

0x1000 prog equ $1000
0x1000 org prog
0x1000 b6 20 13 ldaa $2013
0x1003 40 nega
0x1004 7a 20 14 staa $2014
0x1007 3f swi

0x2013 6c
0x2014 94

PC=0x1000 Control unit (CU) reads B6
 Control decodes B6
PC=0x1001 CU reads address MSB 20
PC=0x1002 CU reads address LSB 13
 CU tells memory to fetch contents at
 address 0x2013
 CU tells ALU to latch value

PC=0x1003 CU reads 40
 CU decodes 40
 CU tells ALU to negate ACCA

PC=0x1004 CU reads 7A
 Control decodes 7A
PC=0x1005 CU reads address MSB 20
PC=0x1006 CU reads address LSB 14
 CU fetches value of ACCA from ALU
 CU tells memory to store value
 at address 0x2014

PC=0x1007

A _________________________

Things you need to know to write HCS12 assembly language programs

HC12 Assembly Language Programming
Programming Model
HC12 Instructions
Addressing Modes
Assembler Directives

Addressing Modes for the HCS12

• Almost all HCS12 instructions operate on memory
• The address of the data an instruction operates on is called the effective address of that
instruction.
• Each instruction has information which tells the HCS12 the address of the data in
memory it operates on.
• The addressing mode of the instruction tells the HCS12 how to figure out the effective
address for the instruction.
• Each HCS12 instructions consists of a one or two byte op code which tells the HCS12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the HCS12 how to determine the effective address.
– All two-byte op codes begin with an $18.
• For example, the LDAA instruction has 4 different op codes, one for each of the 4
different addressing modes.

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective Address:
Memory address used by instruction

ADDRESSING MODE:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative (used only with branch instructions)
IDX Indexed (won’t study indirect indexed mode)

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) −> A
18 06
CLRA ; Clear A 0 −> A
87
ASRA ; Arithmetic Shift Right A
47
TSTA ; Test A (A) − 0x00 Set CCR
97

The HC12 does not access memory
There is no effective address

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $2000 ; ($2000) −> A
B6 20 00 Effective Address: $2000

LDX $2001 ; ($2001:$2002) −> X
FE 20 01 Effective Address: $2001

STAB $2003 ; (B) −> $2003
7B 20 03 Effective Address: $2003

Effective address is specified by the two bytes following op code

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) −> A
96 20 Effective Address: $0020

STX $21 ; (X) −> $0021:$0022
5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

The Immediate (IMM) addressing mode

Value to be used is part of instruction
LDAA #$17 ; $17 −> A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A −> A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)
Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X− ; Post−decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

INC 4,+X ; Pre−increment Indexed
; Add 4 to X
; then increment the number at address (X)

62 23 Effective address: contents of X + 4

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

Example Effective Addr Offset Value in X Registers to use

Constant Offset LDAA n,x (X)+n 0 to FFFF (X) X,Y,SP,PC
Constant Offset LDAA –n,x (X)-n 0 to FFFF (X) X,Y,SP,PC
Postincrement LDAA n,X+ (X) 1 to 8 (X)+n X,Y,SP
Preincrement LDAA n,+X (X)+n 1 to 8 (X)+n X,Y,SP
Postincrement LDAA n,X- (X) 1 to 8 (X)-n X,Y,SP
Predecrement LDAA n,-X (X)-n 1 to 8 (X)-n X,Y,SP
ACC Offset LDAA A,X

LDAA B,X
LDAA D,X

(X)+(A)
(X)+(B)
(X)+(D)

0 to FF
0 to FF

0 to FFFF

(X) X,Y,SP,PC

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details
• IDX: One byte used to specify address
– Called the postbyte
– Tells which register to use
– Tells whether to use autoincrement or autodecrement
– Tells offset to use
• IDX1: Two bytes used to specify address
– First byte called the postbyte
– Second byte called the extension
– Postbyte tells which register to use, and sign of offset
– Extension tells size of offset
• IDX2: Three bytes used to specify address
– First byte called the postbyte
– Next two bytes called the extension
– Postbyte tells which register to use
– Extension tells size of offset

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

BRA 20 35 PC + 2 + 0035 −> PC

BRA 20 C7 PC + 2 + FFC7 −> PC
 PC + 2 − 0039 −> PC

Long branch instruction: Two bytes following op code specifies how far to branch
Treat the offset as an usigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

LBEQ 18 27 02 1A If Z == 1 then PC + 4 + 021A −> PC
If Z == 0 then PC + 4 −> PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA $1030 ; Branch to instruction at address $1030

Summary of HCS12 addressing modes

ADDRESSING MODES

Name Example Op Code Effective
Address

INH Inherent ABA 18 06 None
IMM Immediate LDAA #$35 86 35 PC+1
DIR Direct LDAA $35 96 35 0x0035
EXT Extended LDAA $2035 B6 20 35 0x2035
IDX Indexed
IDX1
IDX2

LDAA 3,X
LDAA 30,X
LDAA 300,X

A6 03
A6 E0 13
A6 E2 01 2C

X+3

IDX Indexed
Postincrement

LDAA 3,X+ A6 32 X (X+3 -> X)

IDX Indexed
Postdecrement

LDAA 3,X- A6 3D X (X-3 -> X)

IDX Indexed
Predecrement

LDAA 3,-X A6 2D X-3 (X-3 -> X)

REL Relative BRA $1050
LBRA $1F00

20 23
18 20 0E CF

PC+2+Offset
PC+4+Offset

A few instructions have two effective addresses:

• MOVB $2000,$3000 Move byte from address $2000 to $3000
• MOVW 0,X,0,Y Move word from address pointed to by X to address pointed to by Y

