« Addition and Subtraction of Hexadecimal Numbers
- Simple assembly language programming

- Huang, Section 2.2

« HC12 Addressing Modes

- Huang, Sections 1.6 and 1.7

@)

The N, Z, C and V bits of the Condition Code Register (CCR)
Addition and Subtraction of Hex numbers

Simple 9S12 programs

Hex code generated from a simple 9S12 program

Things you need to know for 9S12 assembly language
programming

HC12 Addressing Modes

Inherent, Extended, Direct, Immediate, Indexed, and Relative
Modes

Summary of 9512 Addressing Modes

Addition and Subtraction of Hexadecimal Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

Condition Code Register Bits N, Z, V, C

N bit is set if result of operation in negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)
Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

C bit set when result does not fit in word
V bit set whenP+P=N,N+N=P

N bit set when MSB of result is 1

Z bit set when result is 0

TA 2A AC AC

+52 +52 +8A +72

CC 7C 36 1E
C:0 C:0 C:1 C:1
V:1 V:0 V.1 V:0
N:1 N: 0 N: 0 N: 0
Z:0 Z:0 Z:0 Z:0

Subtraction of Hexadecimal Numbers

C bit set on borrow (when the magnitude of the subtrahend is greater than the minuend)
V bit set when N—P=P,P—-N=N

N bit set when MSB is 1

Z bit set when result is 0

TA 8A 5C 2C
=5C =5C —8A =12

1E 2E D2 BA
C:0 C:0 C:1 C:1
V:0 V.1 V.1 V:0
N:0 N: 0 N: 1 N: 1
Z:0 Z:0 Z:0 Z:0

Simple Programs for the HCS12
A simple HCS12 program fragment
org $1000
ldaa $2000

asra
staa $2001

A simple HCS12 program with assembler directives

prog: equ $1000
data: equ $2000

org prog
ldaa input
asra

staa result
Swi

org data
input: de.b $07
result: ds.b 1

HCS12 Programming Model — The registers inside the HCS12 CPU the
programmer needs to know about

Al ol 7 0B
. 0D
|15 o‘X
|15 o‘Y
|15 o‘SP
|15 o‘PC

(LT[1] Je=u

S X HINUZVC
How the HCS12 executes a simple program

EXECUTION OF SIMPLE HC12 PROGRAM

0x1000 prog equ $1000 PC=0x1000 Control unit (CU) reads B6
0x1000 org prog Control decodes B6
0x1000 b6 20 13 ldaa $2013 PC=0x1001 CU reads address MSB 20
0x1003 40 nega PC=0x1002 CU reads address LSB 13
0x1004 7a 20 14 staa $2014 CU tells memory to fetch contents at
0x1007 3f swi address 0x2013
CU tells ALU to latch value
0x2013 o6c
0x2014 94 PC=0x1003 CU reads 40

CU decodes 40
CU tells ALU to negate ACCA

PC=0x1004 CU reads 7A
Control decodes 7A
PC=0x1005 CU reads address MSB 20
PC=0x1006 CU reads address LSB 14
CU fetches value of ACCA from ALU
CU tells memory to store value
at address 0x2014

PC=0x1007

Things you need to know to write HCS12 assembly language programs

HC12 Assembly Language Programming
Programming Model

HC12 Instructions

Addressing Modes

Assembler Directives

Addressing Modes for the HCS12

» Almost all HCS12 instructions operate on memory

* The address of the data an instruction operates on is called the effective address of that
instruction.

* Each instruction has information which tells the HCS12 the address of the data in
memory it operates on.

* The addressing mode of the instruction tells the HCS12 how to figure out the effective
address for the instruction.

» Each HCS12 instructions consists of a one or two byte op code which tells the HCS12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the HCS12 how to determine the effective address.

— All two-byte op codes begin with an $18.

* For example, the LDAA instruction has 4 different op codes, one for each of the 4
different addressing modes.

Core User Guide — §12CPU1SUG V1.2

LDAA LDAA

Operation (M= A
or
imm = A

Loads A with either the value in M or an immediate value,

CCR

Effects § X H | N Z VWV C
[-[-[-[-[al=T2]-]
N- St il M35 of result Is sat; clearad oiheraise
Z: St M result Is 500; cleared ciherwlse
. Cleared

Code and

CPU Address Machine

Cycles Source Form Maode Code (Hex) CPU Cycles
LDAA Sgpral MM BE id E
LOAA 0523 DIR 35 dd =P
LOAA Opr153 EXT BERhll P2
LDAA Oprrd_xysope oX 25 =B rPE
LDAA Opnrs XYs0ece DX1 A5 x££ 320
LDAA opor 18 Xysops o2 25 wb e £F £rPP
LOAA D x_‘r‘sﬂpd_ [a.IDji] As xb EIEEPE
LDAA [apor 18, xyspac [BX2] zg sk e= ££ £IPrDE

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective Address:
Memory address used by instruction

ADDRESSING MODE:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative (used only with branch instructions)
IDX Indexed (won’t study indirect indexed mode)

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ;AddBto A(A)+(B)—>A
18 06

CLRA ;Clear AO—> A

87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) — 0x00 Set CCR
97

The HC12 does not access memory
There is no effective address

0x1000[g 0x2000

7] s
06 35
5 =] *I |
47 a
97 7

The Extended (EXT) addressing mode

Instructions which give the 16—bit address to be accessed

LDAA $2000 £ ($2000) = A

B6 20 00 Effective Address: $2000
LDX $2001 ; ($2001:$2002) —> X
FE 20 01 Effective Address: $2001
STAB $2003 ; (B) = $2003

7B 20 03 Effective Address: $2003

Effective address is specified by the two bytes following op code

0x1000| Be 0x2000| 5 A ‘ ‘B

20 35

00 02 X ‘ ‘
FE 4

20 o7

01

1B

20

03

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; (S0020) —> A

96 20 Effective Address: $0020
STX $21 ;o (X)) —> $0021:50022

58 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

1000 o6 0x0020 o A‘ ‘ ‘B
20 35

= 2 x| |
21 i
7

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 ;8317 —> A

B6 17 Effective Address: PC + 1
ADDA #10 ;(A)+80A — A

&B 0A Effective Address: PC + 1

Effective address is the address following the op code

(1000 BS (2000

17 A | | B
17 35
= = x| |
o) 4

c7

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)
Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5)Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X— ; Post—decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X
INC 4,+X ; Pre—increment Indexed

; Add 4 to X

; then increment the number at address (X)
62 23 Effective address: contents of X + 4

I A
] R

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

Example Effective Addr Offset Value in X Registers to use
Constant Offset LDAA n,x (X)+n 0 to FFFF X X,Y,SP.PC
Constant Offset LDAA —n,x (X)-n 0 to FFFF X X,Y,SP.PC
Postincrement LDAA n, X+ X) 1to8 (X)*tn X,Y,SP
Preincrement LDAA n+X (X)+n 1to8 (X)+n X,Y,SP
Postincrement LDAA n,X- (X) 1t08 (X)-n X,Y,SP
Predecrement LDAA n,-X (X)-n 1t08 (X)-n X,Y,SP
ACC Offset LDAA AX X)+A) 0to FF X) X,Y,SP,PC
LDAA B, X X)+B) 0 to FF
LDAA DX (X)+(D) 0 to FFFF

The data books list three different types of indexed modes:

* Table 4.2 of the Core Users Guide shows details
* IDX: One byte used to specify address
— Called the postbyte

— Tells which register to use

— Tells whether to use autoincrement or autodecrement
— Tells offset to use
* IDX1: Two bytes used to specify address

— First byte called the postbyte

— Second byte called the extension
— Postbyte tells which register to use, and sign of offset

— Extension tells size of offset

» IDX2: Three bytes used to specify address

— First byte called the postbyte

— Next two bytes called the extension
— Postbyte tells which register to use

— Extension tells size of offset

Core User Guide — S12CPU1SUG V1.2

Table 4-2 Summary of Indexed Operations

3-bit constant offset indexed addressing (IDX)
7 5 5 4 3 2 1 0

pestmyte: [w0 5ol signec of'set

Effective address = 5-bit slgred offset + (X, ¥, SF ar FC)

Accumulator offset addressing (IDX)

7] 5 4 3 2 1 0
pogoyte: [1 [0 [1 [w7 T 1] & |
Effective addness = (X, Y. SR or PC) + (A, B, or D)

Autodecrement/autoincrement) indexed addressing (IDX)
7 a8 5 4 3 2 1 0

posmyte: [w@ [1 [gt [sonncdesvale® |

Effective address = (X, Y, orSPjx 1108

9-bit constant offset indexed addressing (IDX1)

7 L] 5 4 3 2 1 a
rosmyte: [1 [1 [1] m [o]oJs]
Effective address = so[olfsat axtension byle) + (X, ¥, SF, or PC)

16-bit constant offset indexed addressing (ID¥2)

7 a8 5 4 3 2 1 0
pospyte [1 [0 [1 [o Jo[1]0]
Effzctive address = (bwo ofset extznslon byizs) = (K ¥, SR ar BC)

16-bit constant offset indexed-indirect addressing ([IDX:2])
7 6 5 4 3 2 1 4
pesmyte: [1 [0 [1] o Jo[1]1]
(fwz oftset extension byles) + (X, ¥, SR or PG} 15 acdress of pointer 1o effecive address

Accumulator D offset indexed-indirect addressing ([D,IDX])
7T 6 5 4 3 2 1 0
pesmyte [1 [[1] o 1]]1]
[%, ¥, 5P, ar PC) + (D) Is adoress of poirier o efeclive address
NOTES:
- s2lects X (O0), ¥ (01), SP (10}, or PG (11}
. 3a sedacts A (00), 5 (01), or D (10}
In autoincrementidecrament Indexed addrasaing. PC Is not 3 valld selection.
p s2leats pra- (1) of post- (1] Incramentidecremant.
Increment values range from 0000 {+1) ta 0111 (=B} Decremant valles range from 1111 (—1) to 1000 (-3).
5 |5 te 5Ign bt of h offsat 2xtension byie.

o g e

All indexed addressing modes use a 16-bit CPU register and additional information to create an indexed
address. In most cases the indexed address is the effective address of the instruction, that is, the addmess of
the memary location that the instruction acts on. In indexed-indirect addressing, the indexed address is the
location of a value that points to the e flective addrass.

68

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

BRA 2035 PC+2+0035—>PC

BRA20C7 PC+2+FFC7—>PC
PC+2-0039 —>PC

Long branch instruction: Two bytes following op code specifies how far to branch
Treat the offset as an usigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

LBEQ 182702 1A IfZ==1then PC+4+ 021A — PC
If Z =0 then PC +4 — PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA $1030 ; Branch to instruction at address $1030

1020 2p BC ‘ |

Summary of HCS12 addressing modes

ADDRESSING MODES
Name Example Op Code Effective
Address
INH Inherent ABA 18 06 None
IMM Immediate | LDAA #$35 86 35 PC+1
DIR Direct LDAA $35 96 35 0x0035
EXT Extended LDAA $2035 B6 20 35 0x2035
IDX Indexed LDAA 3,X A6 03 X+3
IDX1 LDAA 30,X A6 E0 13
IDX2 LDAA 300,X A6 E2 01 2C
IDX Indexed LDAA 3, X+ A6 32 X (X+3 > X)
Postincrement
IDX Indexed LDAA 3,X- A6 3D X (X-3 ->X)
Postdecrement
IDX Indexed LDAA 3,-X A6 2D X-3 (X-3 >X)
Predecrement
REL Relative BRA $1050 2023 PC+2+0Offset
LBRA $1F00 18 20 OE CF PC+4+0Offset

A few instructions have two effective addresses:

* MOVB §2000,$3000 Move byte from address $2000 to $3000
* MOVW 0,X,0,Y Move word from address pointed to by X to address pointed to by Y

