- More on addressing modes.
- 9S12 cycles and execution time.
- AS12 Assembler Directives
- Huang, Sections 1.6 through 1.10
 - Using X and Y registers as pointers
 - How to tell which branch instruction to use
 - How to hand assemble a program
 - Number of cycles and time taken to execute an 9S12 program

The HCS12 has 6 addressing modes

Most of the HC12's instructions access data in memory There are several ways for the HC12 to determine which address to access

Effective Address:

Memory address used by instruction

ADDRESSING MODE:

How the HC12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent IMM Immediate DIR Direct EXT Extended REL Relative (used only with branch instructions) IDX Indexed (won't study indirect indexed mode)

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

- To initialize pointer use
 - ldx #table

not

ldx table

• For example, the following loads the address of table (\$2000) into X; i.e., X will point to table:

ldx #table ; Address of table => X

The following puts the first two bytes of table (\$0C7A) into X. X will not point to table: ldx table ; First two bytes of table => X

• To step through table, need to increment pointer after use

ldaa 0,x inx

or

ldaa 1,x+

table					
0C					
7A					
D5					
00					
61					
62					
63					
64					

org \$2000 table: dc.b 12,122,-43,0 dc.b 'a','b','c','d'

Which branch instruction should you use?

Branch if A > BIs 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0, so 0xFF > 0x00

If signed, 0xFF = -1 and 0x00 = 0, so 0xFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR) Using signed numbers: BGT (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit For signed numbers, use branch instructions which check V bit

Hand Assembling a Program

To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go into memory.

(E.g., org \$2000 will put the first instruction at address \$2000.)

2. Look at the first instruction. Determine the addressing mode used. (E.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the HCS12 Core Users Guide, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (E.g., ldab IMM has object code C6 ii.)

• Table 5.1 of the Core Users Guide has a concise summary of the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (E.g., ldab #10 becomes C6 0A.)

5. Add the number of bytes of this instruction to the address of the instruction to determine

the address of the next instruction.

(E.g., 2000 + 2 = 2002 will be the starting address of the next instruction.)

org \$2000 ldab #10 loop: clra dbne b,loop swi

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
LBMI ref16	Long branch if minus If N=1, then (PC)+4+ret=>PC	REL	19 29 qq rr	OPPP (branch) OPO (no branch)	
LBNE ref16	Long branch if not equal to 0 if Z=0, then (PC)+4+rei⇒PC	REL	18 26 qq rr	oppp (branch) opo (no branch)	<u></u>
LBPL ref16	Long branch If plus If N=0, then (PC)+4+ret=>PC	REL	19 2Aqq rr	oppp (branch) opo (no branch)	
LBRA.rel16	Long branch always	REL	18 20 qq rr	0999	
LBRN rel16	Long branch never	REL	18 21 qq rr	090	
LBVC ref16	Longbranch if V clear If V=0,then (PC)+4+rei⇒PC	REL	18 28 qq rr	oppp (branch) opo (no branch)	
LBVS rel16	Longbranch If V set If V=1,then (PC)+4+rel⇒PC	REL	18 29 qq xr	oppp (branch) opo (no branch)	
LDAA#apr8i LDAA apr8a LDAA apr8a LDAA apr8a LDAA apr8_xysapc LDAA aprx9_xysapc LDAA aprx16_xysapc LDAA [D_xysapc]	Load A (M)⇔A or imm⇔A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	pc ii pc dd pc hh 11 AC xb AC xb ff AC xb se ff AC xb AC xb se ff	P 196 196 190 6199 61619 61619 61919 61919	4440
LDAB #opr8/ LDAB opr8a LDAB opr16a LDAB opr02,y/sppc LDAB opr02,y/sppc LDAB opr05,y/sppc LDAB (opr05,y/sppc) LDAB (opr05,y/sppc)	Load B (M)⇒8 or imm⇔B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	ccii nedd pehhll Scxb Scxbff Scxbesff Scxbesff Scxbesff	P rPE rP0 rP0 frP0 frPp f1frPf f1frPf	<u>440-</u>
LDD #opr161 LDD opr16a LDD opr16a LDD oprx16, xysppc LDD oprx16, xysppc LDD oprx16, xysppc LDD [oprx16, xysppc]	LoadD (MtM+1)=sAtB orimmesAtB	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	ccjjkk podd rchill Soxb Soxbff Soxbesff Soxbesff Soxbesff	P0 RPÉ RP0 RP0 ÉXSP É1ERPE É1ERPE	<u>440-</u>
LDS #opri6/ LDS opri6/ LDS opri6/ LDS opri6/ LDS opri6/, yspc LDS opri6/, yspc LDS (opri6/, yspc LDS (opri6/, yspc) LDS (opri6/, yspc) LDS (opri6, yspc)	Load SP (MtM+1)⇔SP or imm⇔SP	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	CF jj kk DF dd FF hh 11 DF xb DF xb ff DF xb ee ff DF xb DF xb ee ff DF xb ee ff	P0 RPE RP0 RP0 Expp E1ERPE E1ERPE	<u>440-</u>
LDX #opri6i LDX opri6i LDX opri6i LDX opri6i LDX opri6i, ysspc LDX opri6i, ysspc LDX (pyrspc LDX (pyrspc LDX (pyrspc) LDX (pyrspc)	Load X (MtM+1)⇔X orimmesX	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	CE jj kk DE dd PE hh 11 SE xb SE xb Eff SE xb ee ff SE xb ee ff SE xb ee ff	PO RPÉ RPO RPO ÉIRPP ÉIERPÉ ÉIPRPÉ	<u>440-</u>
LDY #opri6i LDY opri6a LDY opri6a LDY opri6a LDY opri6, xyspc LDY opri6, xyspc LDY opri6, xyspc LDY [opri6, xyspc LDY [opri6, xyspc]	Load Y (MtM+1)⇒Y or imm⇔Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] JDX2]	CDjjkk DDdd FDkhll SDxb SDxb SDxbeeff SDxbeeff SDxbeeff SDxbeeff	PO RPÉ RPO RPO ÉRSP Élénpé Élénpé	440-

MOTOROLA

113

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
BRCLR oor8a, msk8, rel8	Branch If bit is) clear: If	DIR	4Fdd nm zr	+999	
BRCLR cor16a, msk8, rel8	(M)+(mask byte)=0, then	EXT	17hhllmnrr	rfppp	
BRCLR oprx0_xysppc, msk8, rel8	(PC)+2+re⇔PC	IDX	0Fxbmmrr	r999	
BRCLR oprx9,xysppc, msk8, rel8 BRCLR oprx16,xysppc, msk8, rel8		IDX1 IDX2	07 xb ff nn rr 07 xb ee ff nn rr	rÉPPP PrÉPPP	
BRN rel3	Branch never	REL	21 m	2	
BRSET opr8, msk8, rei8	Branch If bit(s) set; if	DIR	42 dd nm rr	2999	
BRSET opr16a, msk8, rel8 BRSET oprx0_xysppc, msk8, rel8	(M)+(mask byte)=0, then (PC)+2+re⇔PC	EXT IDX	15 hhllmnrr 05 xhom rr	rf999	
BRSET oprx9.xysppc, msk8, rel8	0,0,12,102,10	IDX1	0 xb ff mn rr	r£999	
BRSET oprx16,xysppc, msk8, rel8		IDX2	02 xb ee ff nm rr	Prépop	
BSET opr8, msk8	Set bit(s) In M	DIR	4Cdd mn	r9w0	
BSET opri6a, msk8 BSET opri0 xyspoc, msk8	(M) mask byte⇒M	EXT IDX	1Chh 11 mm 0Cxb nm	2949 2940	
BSET aprx9.xysppc, msk8		IDX1	0Cxb ff mn	rPwP	
BSET oprx16,xysppc, msk8		IDX2	0Cxbeeffnm	Ér9v90	
BSR reiß	Branch to subroutine; (SP)-2⇒SP	REL	07 m	9999	
	RTN _H :RTN _L ⇒Mgp:Mgp+1 (PC)+2+re⇔PC				
BVC rel8	Branch If V clear; If V=0, then	REL	29 TT	ppp (branch)	
	(PC)+2+re⇔PC			p (no branch)	
BVS rei8	Branch IfV set; If V=1, then (PC)+2+re⇔PC	REL	29 TT	999 (branch) 9 (no branch)	
CALL opr16s, page	Call subroutine in expanded memory	EXT	4Ahh 11 pg	gn2#999	
CALL oprx0_xysppc, page CALL oprx9.xysppc, page	(SP)−2⇒SP RTN _M :RTN _L ⇒Mgp:Mgp+1	IDX IDX1	411 xb pg 411 xb ff pg	gn&ss999 gn&ss999	
CALL conv16.xysppc, page	(SP)−1⇒SP; (PPG)⇒Mep	IDX2	42 xb ee ff pq	ÉquênDOD	
CALL [D, xysppc]	pg⇒PPAGE register	[D,IDX]	4B xb	ÉİignGePPP	
CALL [aprx16, xyspac]	subroutine address⇒PC	[IDX2]	42 xb ee ff	£lignGePPP	
CBA	Compare A to B; (A)–(B)	INH	1917	00	
CLCSame as ANDCC #\$FE	Clear C bit	IMM	10 72	2	0
CLISame as ANDCC#SEF	Clear I bit	IMM	10 27	5	0
CLR opri6a	Clear M; \$00⇒M	EXT	79 hh 11	240	0100
CLR aprx0_xysppc CLR aprx9_xysppc		IDX IDX1	69 xb 69 xb ff	PM PMD	
CLR aprx16.xyspac		IDX2	69 xb ee ff	Pw7	
CLR [D, x) sport		[D,IDX]	69 xb	PIEw	
CLR (op/x16, x)/sppc] CLRA	Clear A: S00-sA	[IDX2] INH	69 xb ee ff 97	PIPW	
CLRB	ClearB;\$00⇒8	INH	e7 C7	0	
CLVSame as ANDCC#\$FD	ClearV	IMM	10 PD	9	
CMPA#opr8/	Compare A	IMM	9111	9	
CMPA opr8a	(A)-(M) or (A)-imm	DIR	91 dd 91 bh 11	r9É	
CMPA.opr16a CMPA.oprx0_xysppc	1	EXT IDX	Bibbil Alsh	290 295	1
CMPA oprx9,xysppc		IDX1	A1 xb EE	r90	
CMPA oprar16, xysppc	1	IDX2	Al xb es ff	Erpp	1
CMPA(D,x)sppc] CMPA(op/x16,x)sppc]		[D,IDX] [DX2]	Alxb Alxb es ff	flfrøf flørøf	
CMPB#opr8/	Compare B	IMM	Clii	9	
CMPB opr8a	(B)-(M) or (B)-imm	DIR	D1 dd	rVE	
CMPB opr16a	1	EXT	91 hh 11 91 xh	190	1
CMPB oprx0_xysppc CMPB oprx9_xysppc		IDX IDX1	Blxb Blxbff	r95 r90	
CMPB oprx16.xyspac	1	IDX2	S1xb es ff	Erpp	1
CMPB (D, xyspac)	1	[D,IDX]	21 xb	flfrpf	1
CMPB [aprx16, xysppc]		[IDX2]	Sixbeeff	fibibi	

MOTOROLA

109

DBNE

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not teach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is \$100 to \$0FF (-256 to +255) from the address following the last byte of object code in the instruction.

Decrement and Branch if Not Equal to Zero

CCR Effects

s	х	н	Т	Ν	z	۷	с
-	-	-	-	-	-	-	-

Code and CPU

Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
DBNE abdxysp, rel9	REL (9-bit)		ססס (branch) ססס (no branch)

Source Form	Postbyte ¹	Object Code	Counter Register	Offset
DBNE A, rel9 DBNE B, rel9 DBNE D, rel9 DBNE X, rel9 DBNE Y, rel9 DBNE SP, rel9	0010 X000 0010 X001 0010 X100 0010 X101 0010 X110 0010 X111	04 20 rr 04 21 rr 04 24 rr 04 25 rr 04 25 rr 04 26 rr 04 27 rr	A B D X Y SP	Positive
DBNE A, ral9 DBNE B, ral9 DBNE D, ral9 DBNE X, ral9 DBNE Y, ral9 DBNE SP, ral9 DBNE SP, ral9	0011 X000 0011 X001 0011 X100 0011 X100 0011 X101 0011 X110 0011 X111	04 30 rr 04 31 rr 04 34 rr 04 35 rr 04 36 rr 04 37 rr	А в D X Y SP	Negative

MOTOROLA

355

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	8 X H I N Z V C
STY oprisa STY oprisa STY oprisa STY opris, kyspc STY opris, kyspc STY (opris, kyspc) STY (opris, kyspc) STY (opris, kyspc)	Store Y (Yi,∉Yi,)⇒M:M+1	DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	spdd 7phh 11 6pxb 6pxb ff 6pxb ee ff 6pxb 6pxb	5M 5M0 5M0 5M5 515M 515M 515M	<u></u> 440-
SUBA#opr3 SUBA opr3a SUBA opr3a SUBA opr32, xysppc SUBA opr35, xysppc SUBA opr35, xysppc SUBA opr35, xysppc SUBA (opr35, xysppc)	Subtracthom A (A)–(M)⇒A or (A)–imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,IDX]	9011 90dd 90hh 11 A0xb A0xb ff A0xb ee ff A0xb ee ff A0xb ee ff	9 196 190 190 5199 51999 515195 519195	<u></u> 41444
SUBB #cpr3 SUBB cpr3a SUBB cpr3a SUBB cpr32, xysppc SUBB cpr32, xysppc SUBB cpr35, xysppc SUBB cpr35, xysppc SUBB (cpr35, xysppc)	Subtracthom8 (B)–(M)⇔8 or (B)–imm⇒8	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,IDX]	C0 11 D0 dd P0 hh 11 20 xb 20 xb ff 20 xb ee ff 20 xb ee ff 20 xb ee ff	9 19£ 190 196 190 £1£19 £1£19 £1£19 £1£19	<u></u> 4444
SUBD aprila SUBD aprila SUBD aprila SUBD aprila SUBD aprila SUBD aprila SUBD (aprila, syappe) SUBD (aprila, syappe) SUBD (aprila, syappe)	SubtractfromD (A:B)⊣(M:M+1)⇔A:B or (A:B)⊣mm⇔A:B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	22 jjkk 22 dd 22 hh 11 A3 xb A3 xb ff A3 xb ee ff A3 xb A3 xb ee ff	PO XPÉ XPO XPO ÉXPP É1ERPÉ É1ERPE	<u></u> 4444
SWI	$ \begin{array}{l} & \text{Software Interrupt; } (SP)- \geq SP \\ & \text{RTM}_{4}, RTM_{1} \Rightarrow M_{12},	INH	37	VSPCCPC+P*	
	hardware interrupts and unimplemente	<u> </u>	traps.		
TAB	Transfer A to B; (A)⇒B	INH	19 02	00	
TAP	Transfer A to CCR; (A)⇒CCR Assembled as TFR A, CCR	INH	2702	2	A 8444444
TBA	Transfer B to A; (B)⇔A	INH	1907	00	
TBEQ abdxysp,rel9	Test and branch if equal to 0 If (counter)=0, then (PC)+2+rel⇒PC	REL (9-bit)	04 lb rr	999 (branch) 990 (no branch)	
ΤΒΙ, αριχθ_χγερρο	Table lookup and interpolate, 8-bit (M)+((B)×((M+1)-(M)))=>A	IDX	19 3D xb	OREEFP	
TBNE abdxysp,rel9	Test and branch if not equal to 0 If (counter)≠0, then (PC)+2+rei⇒PC	REL (9-bit)	04 1b rr	999 (branch) 990 (no branch)	
TFR abcilysp,abcilysp	Transfer from register to register (r1) \Rightarrow r2r1 and r2 same size \$00;(r1) \Rightarrow r2r1=8-bit; r2=16-bit (r1 ₄) \Rightarrow r2r1=16-bit; r2=8-bit	INH	97 eb	P	 or AUAAAAAA
TPASame as TFR COR,A	Transfer CCR to A; (CCR)⇒A	INH	37 20	9	

118

MOTOROLA

68HC12 Cycles

• 68HC12 works on 48 MHz clock

• A processor cycle takes 2 clock cycles – P clock is 24 MHz

• Each processor cycle takes 41.7 ns $(1/24 \ \mu s)$ to execute

• An instruction takes from 1 to 12 processor cycles to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Core Users Guide.

- For example, LDAA using the IMM addressing mode shows one CPU cycle (of type P).

- LDAA using the EXT addressing mode shows three CPU cycles (of type rPf).

- Section A.27 of the Core Users Guide explains what the HCS12 is doing during each of the different types of CPU cycles.

2000			org \$2000	; Inst	Mode Cycles
2000	c6 0a		ldab #10	; LDAB	(IMM) 1
2002	87	loop:	clra	; CLRA	(INH) 1
2003	04 31 fc		dbne b,loop	; DBNE	(REL) 3
2006	3f		swi	; SWI	9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes through loop 10 times (which has two instructions, on with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles). Total number of cycles:

 $1 + 10 \times (1 + 3) + 9 = 50$

50 cycles = 50×41.7 ns/cycle = 2.08μ s

Load B

LDAB

 ${\sf Operation} \quad (M) \Rightarrow B$

or $imm \Rightarrow B$

Loads B with either the value in M or an immediate value.

CCR Effects

s	х	н	Т	Ν	z	٧	с	
-	-	-	-	Δ	Δ	0	-]

N: Set If MS8 of result is set; cleared otherwise Z: Set If result is \$00; cleared otherwise V: Cleared

Code and CPU

Cycles

a				
	Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
	LDAB #opr8/ LDAB opr/6a LDAB opr/6a LDAB opr/0, zysppc LDAB opr/9, zysppc LDAB opr/6, zysppc LDAB (0, zysppc) LDAB (0, zysppc)	DIR EXT IDX IDX1 IDX2 [D,IDX]	E6 xb E6 xb ff E6 xb ee ff	P rPf rPO rPf frPD fIfrPf fIFrPf

408

MOTOROLA

HC12 Assembly Language Programming

Programming Model Addressing Modes Assembler Directives HC12 Instructions Flow Charts

Assembler Directives

• In order to write an assembly language program it is necessary to use assembler directives.

• These are not instructions which the HC12 executes but are directives to the assembler program about such things as where to put code and data into memory.

• All of the assembler directives can be found in as12.html on the EE 308 home page.

• We will use only a few of these directives. (Note: In the following table, [] means an optional argument.) Here are the ones we will need:

Directive Name	Description	Example
equ	Give a value to a symbol	len: equ 100
org	Set starting value of	org \$1000
	location counter where code	
	or data will go	
dc[.size]	Allocate and initialize	var: dc.b 2,18
	storage for variables. Size	
	can be b (byte) or w (two	
	bytes)	
	If no size is specified, b is	
	used	
ds[.size]	Allocate specified number	table: ds.w 10
	of storage spaces. size is	
	the same as for dc directive	
fcc	Encodes a string of ASCII	table: fcc "Hello"
	characters. The first	
	character is the delimiter.	
	The string terminates at the	
	next occurrence of the	
	delimiter	

Using labels in assembly programs

A label is defined by a name followed by a colon as the first thing on a line. When the label is referred to in the program, it has the numerical value of the location counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

org \$2000 table1: dc.b \$23,\$17,\$f2,\$a3,\$56 table2: ds.b 5 var: dc.w \$43af

The as12 assembler produces a listing file (.lst) and a symbol file (.sym). Here is the listing file from the assembler:

 as12, an absolute assembler for Motorola MCU's, version 1.2e

 2000
 org \$2000

 2000 23 17 f2 a3 56
 table1:
 dc.b \$23,\$17,\$f2,\$a3,\$56

 2005
 table2:
 ds.b 5

 200a 43 af
 var:
 dc.w \$43af

 Executed: Sat Jan 06 13:19:23 2007
 Total cycles: 0, Total bytes: 7

 Total errors: 0, Total warnings: 0

Note that table1 is a name with the value of \$2000, the value of the location counter defined in the org directive. Five bytes of data are defined by the dc.b directive, so the location counter is increased from \$2000 to \$2005. table2 is a name with the value of \$2005. Five bytes of data are set aside for table2 by the ds.b 5 directive. The as12 assembler initialized these five bytes of data to all zeros. var is a name with the value of \$200a, the first location after table2.