
• AS12 Assembler Directives
• A Summary of 9S12 pnstructions
• Disassembly of 9S12 op codes
• Huang Section 1.8, Chapter 2
• MC9S12 V1.5 Core User Guide Version 1.2, Section 12

o A labels is a name assigned the address of the location counter
where ithe label is defined

o Use of {\tt dc} and {\tt ds} directives
o A summary of 9S12 instruction
o How to tell which branch instruction to use

HC12 Assembly Language Programming
Programming Model
Addressing Modes
Assembler Directives
HC12 Instructions
Flow Charts

1. Data Transfer and Manipulation Instructions — instructions which move
and manipulate data (HCS12 Core Users Guide, Sections 4.3.1, 4.3.2,
and 4.3.3).

• Load and Store—load copy of memory contents into a register; store
copy of register contents into memory.
LDAA $2000 ; Copy contents of address $2000 into A
STD 0,X ; Copy contents of D to address X and X+1

• Transfer — copy contents of one register to another.
TBA ; Copy B to A
TFR X,Y ; Copy X to Y

• Exhange — exchange contents of two registers.
XGDX ; Exchange contents of D and X
EXG A,B ; Exchange contents of A and B

• Move — copy contents of one memory location to another.
MOVB $2000,$20A0 ; Copy byte at $2000 to $20A0
MOVW 2,X+,2,Y+ ; Copy two bytes from address held

; in X to address held in Y
; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, divison
(HCS12 Core Users Guide, Sections 4.3.4, 4.3.6 and 4.3.10).

ABA ; Add B to A; results in A

SUBD $20A1 ; Subtract contents of $20A1 from D
INX ; Increment X by 1
MUL ; Multiply A by B; results in D

3. Logic and Bit Instructions — perform logical operations (HCS12 Core
Users Guide, Sections 4.3.8, 4.3.9, 4.3.11 and 4.3.12).

• Logic Instructions
ANDA $2000 ; Logical AND of A with contents of $2000
NEG -2,X ; Negate (2’s comp) contents of address (X-2)
LSLA ; Logical shift left A by 1

• Bit manipulate and test instructions—work with one bit of a register
or memory.
BITA #$08 ; Check to see if Bit 3 of A is set
BSET $0002,#$18 ; Set bits 3 and 4 of address $002

4. Data test instructions — test contents of a register or memory (to see if
zero, negative, etc.), or compare contents of a register to memory (to see
if bigger than, etc.) (HCS12 Core Users Guide, Section 4.3.7).

TSTA ; (A)-0 -- set flags accordingly
CPX #$8000 ; (X) - $8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto,
it-then-else, switch-case) (HCS12 Core Users Guide, Sections 4.3.17
and 4.3.18).

JMP L1 ; Start executing code at address label L1
BEQ L2 ; If Z bit set, go to label L2
DBNE X,L3 ; Decrement X; if X not 0 then goto L3
BRCLR $1A,#$80,L4 ; If bit 7 of addr $1A clear, go to label L4

6. Function Call and Interrupt Instructions — initiate or terminate a subroutine;
initiate or terminate and interrupt call (HCS12 Core Users
Guide, Sections 4.3.18, 4.3.19).

• Subroutine instructions:
JSR sub1 ; Jump to subroutine sub1
RTS ; Return from subroutine

• Interrupt instructions
SWI ; Initiate software interrupt
RTI ; Return from interrupt

7. Load Effective Address Instructions — Put effective address into X, Y
or SP (HCS12 Core Users Guide, Section 4.3.22).

LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register
(HCS12 Core Users Guide, Section 4.3.23).

ANDCC #$f0 ; Clear N, Z, C and V bits of CCR
SEV ; Set V bit of CCR

9. Stacking Instructions—push data onto and pull data off of stack (HCS12
Core Users Guide, Section 4.3.21).

PSHA ; Push contents of A onto stack
PULX ; Pull two top bytes of stack, put into X

10. Stop and Wait Instructions — put HC12 into low power mode (HCS12
Core Users Guide, Section 4.3.24).

STOP ; Put into lowest power mode
WAI ; Put into low power mode until next interrupt

11. Instructions we won’t discuss or use — BCD arithmetic, fuzzy logic, minimum
and maximum, multiply-accumulate, table interpolation (HCS12
Core Users Guide, Sections 4.3.5, 4.3.13, 4.3.14, 4.3.15, 4.3.16).

Branch if A > B

Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0,
so 0xFF > 0x00

If signed, 0xFF = −1 and 0x00 = 0,
so 0xFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR)
Using signed numbers: BGT (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

Will the branch be taken?

LDAA #$FF LDAA #$FF
CMPA #$0 CMPA #$0
BLO label1 BLT label2

LDX #$C000 LDX #$C000
CPX #$8000 CPX #$8000
BGT label3 BHI label4

Disassembly of an HC12 Program
• It is sometimes useful to be able to convert HC12 op codes into mnemonics.
• For example, consider the hex code:

ADDR DATA
---- --
1000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use Table 4.5 of the HCS12 Core Users
Guide.
– If the first byte of the instruction is anything other than $18, use Sheet 1 of 2 (Page 97).
From this table, determine the number of bytes of the instruction and the addressing
mode. For example, $C6 is a two-byte instruction, the mnemonic is LDAB, and it uses
the IMM addressing mode. Thus, the two bytes C6 05 is the op code for the
instruction LDAB #$05.
– If the first byte is $18, use Sheet 2 of 2 (Page 98), and do the same thing. For example,
18 06 is a two byte instruction, the mnemonic is ABA, and it uses the INH addressing
mode, so there is no operand. Thus, the two bytes 18 06 is the op code for the instruction
ABA.
– Indexed addressing mode is fairly complicated to disassemble. You need to use Table
4.8 to determine the operand. For example, the op code $E6 indicates LDAB indexed,
and may use two to four bytes (one to three bytes in addition to the op code). The
postbyte 01 indicates that the operand is 0,1, which is 5-bit constant offest, which takes
only one additional byte. All 5-bit constant offset, pre and post increment and decrement,
and register offset instructions use one additional byte. All 9-bit constant offset
instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit
offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit
constant offset instructions use three postbytes, withe the 2nd and 3rd holding the 16-bit
unsigned offset.
– Transfer (TFR) and exchange (EXG) instructions all have the op code $B7. Use Table
4.6 to determine whether it is TFR or an EXG, and to determine which registers are being
used. If the most significant bit of the postbyte is 0, the instruction is a transfer
instruction.
– Loop instructions (Decrement and Branch, Increment and Branch, and Test and
Branch) all have the op code $04. To determine which instruction the op code $04
implies, and whether the branch is positive (forward) or negative (backward), use Table

4.7. For example, in the sequence 04 35 EE, the 04 indicates a loop instruction. The 35
indicates it is a DBNE X instruction (decrement register X and branch if result is not
equal to zero), and the direction is backward (negative). The EE indicates a branch of -18
bytes.
• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 => LDAA #$05 two-byte LDAA, IMM addressing mode
CE 20 00 => LDX #$2000 three-byte LDX, IMM addressing mode
E6 01 => LDAB 1,X two to four-byte LDAB, IDX addressing

 mode. Operand 01 => 1,X, a 5b constant
offset which uses only one postbyte

18 06 => ABA two-byte ABA, INH addressing mode
04 35 EE => DBNE X,(-18) three-byte loop instruction

Postbyte 35 indicates DBNE X, negative
3F => SWI one-byte SWI, INH addressing mode

