
• Disassembly of 9S12 op codes
• Writing an assembly language program
• Huang Sections 2.4, 2.5, 2.6

o Disassembly of 9S12 op codes
o Use flow charts to lay out structure of program
o Use common flow structures

 if-then
 if-then-else
 do-while
 while

o Do not use spaghetti code
o Plan structure of data in memory
o Plan overall structure of program
o Work down to more detailed program structure
o Implement structure with instructions
o Optimize program to make use of instruction efficiencies
o Do not sacrifice clarity for efficiency

Writing Assembly Language Programs — Use Flowcharts to Help Plan Program
Structure

Flow chart symbols:

IF-THEN Flow Structure

 i
f (C)
 {

A;
 }

EXAMPLE:

 if (A<10)
 {
 var = 5;
 }

 CMPA #10
 BLT L1
 BRA L2
L1: LDAB #5
 STAB var
L2: next instruction

OR:

 CMPA #10
 BGE L2
 LDAB #5
 STAB var
L2: next instruction

IF-THEN-ELSE Flow Structure

if (C)

{

A;

}

else

{

B;

}

if(A < 10)

{

var = 5;

}

else

{

var = 0;

}

 CMPA #10
 BLT L1
 CLR VAR
 BRA L2
L1: LDAB #5
 STAB var
L2: next instruction

DO WHILE Flow Structure

do

{

A;

}

while (C);

EXAMPLE:

 i = 0;
 do
 {
 table[i]=table[i]/2;
 i=i+1;
 }

 while (i <= LEN);

 LDX #table
 CLRA
L1: ASR 1,X+
 INCA
 CMPA #LEN
 BLE L1

WHILE Flow Structure

while (C)

{

A;

}

EXAMPLE:

 i = 0;
 while(i <= LEN)
 {
 table[i]=table[i]*2;
 i=i+1;
 }

 LDX #table
 CLRA
L1: CMPA #LEN
 BLT L2
 BRA L3
L2: ASL 1,X+
 INCA
 BRA L1
L3: next instruction

Use Good Structure When Writing Programs — Do Not Use
Spaghetti Code

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values. Each
value is between 0 and 255. Create a new table whose contents are the original
table divided by 2.

1. Determine where code and data will go in memory.
Code at $1000, data at $2000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-bit numbers.

3. Draw a picture of the data structures in memory:

4. Strategy: Because we are using a table of data, we will need pointers to each table so
we can keep track of which table element we are working on.
Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.

6. Need a way to determine when we reach the end of the table.
One way: Use a counter (say, register A) to keep track of how many
Elements we have processed.

7. Add code to implement blocks:

8. Write program:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000
count: equ 5

org prog ;set program counter to 0x1000
ldaa #count ;Use A as counter
ldx #table1 ;Use X as data pointer to table1
ldy #table2 ;Use Y as data pointer to table2

l1: ldab 0,x ;Get entry from table1
lsrb ;Divide by two (unsigned)
stab 0,y ;Save in table2
inx ;Increment table1 pointer
iny ;Increment table2 pointer
deca ;Decrement counter
bne l1 ;counter != 0 => more entries to divide
swi ;Done

org data
table1: dc.b $07,$c2,$3a,$68,$F3
table2: ds.b count

9. Advanced: Optimize program to make use of instructions set efficiencies:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000
count: equ 5

org prog ;set program counter to 0x1000
ldaa #count ;Use B as counter
ldx #table1 ;Use X as data pointer to table1
ldy #table2 ;Use Y as data pointer to table2

l1: ldab 1,x+ ;Get entry from table1; then inc pointer
lsrb ;Divide by two (unsigned)
stab 1,y+ ;Save in table2; then inc pointer
dbne a,l1 ;Decrement counter; if not 0, more to do
swi ;Done

org data
table1: dc.b $07,$c2,$3a,$68,$F3
table2: ds.b count

TOP-DOWN PROGRAM DESIGN
• PLAN DATA STRUCTURES IN MEMORY
• START WITH A LARGE PICTURE OF PROGRAM STRUCTURE
• WORK DOWN TO MORE DETAILED STRUCTURE
• TRANSLATE STRUCTURE INTO CODE
• OPTIMIZE FOR EFFICENCY —
DO NOT SACRIFICE CLARITY FOR EFFICIENCY

