
• Some more simple assembly language programs
• Using 9S12 input and output ports
• Huang Sections 7.2 through 7.5

o Using a subroutine to wait for and respond to an event
o Using an input port to chech the state of DIP switches
o Using an output port to control LEDs
o An assembly language program to display a pattern on a set of

LEDs

; Subroutine to wait for 100 ms

delay: psha ; 2 cycles
pshx ; 2 cycles
ldaa #250 ; 1 cycle

loop2: ldx #3200 ; 2 cycles ------------
loop1: dbne x,loop1 ; 3 cycles inner loop | Outer loop

dbne a,loop2 ; 3 cycles ------------
pulx ; 3 cycls
pula ; 3 cycls
rts ; 5 cycls

• Inner loop takes 3 cycles; is executed 3200 (X) times
• Outer loop takes (2 + 3X + 3) cycles; is executed 250 (A) times
• Total number of cycles: 2+2+1+A*(2+3X+3)+3+3+5 = 2,401,266 cycles
• This takes 100 ms with 24 MHz E-clock

Some C basics
• Every C program has a function main()

– The simplest C program is:

main()
{

}

– Our compiler ends a program by executing an infinite loop – the program never returns
to DBug-12. In order to return to DBug-12, include the swi assembly language
instruction. Here is how to do that:

main()
{

asm(" swi");
}

• Every statement ends with a semicolon
x = a+b;

• Comment starts with /* ends with */
/* This is a comment */

or

// This is a comment too

• Simple program – increment Port A

#include "hcs12.h"
main()
{

DDRA = 0xff; /* Make PORTA output */
PORTA = 0; /* Start at 0 */
while(1) /* Repeat forever */
{

PORTA = PORTA + 1;
}

}

• Data Types:

8-bit | 16-bit

unsigned char | unsigned int
signed char | signed int

• Need to declare variable before using it:
signed char c;
unsigned int i;

• Can initialize variable when you define it:
signed char c = 0xaa;
signed int i = 1000;

– You tell compiler it you are using signed or unsiged numbers; the compiler will figure
out whether to use BGT or BHI

• Arrays:
unsigned char table[10]; /* Set aside 10 bytes for table */

 – Can refer to elements table[0] through table[9]
– Can initialize an array when you define it:

unsigned char table[] = {0xaa, 0x55, 0xa5, 0x5a};

• Arithmetic operators:
+ (add) x = a+b;
- (subtract) x = a-b;
* (multiply) x = a*b;
/ (divide) x = a/b;
% (modulo) x = a%b; (Remainder on divide)

• Logical operators
& (bitwise AND) y = x & 0xaa;
| (bitwise OR) y = x | 0xaa;
^ (bitwise XOR) y = x ^ 0xaa;
<< (shift left) y = x << 1;
>> (shift right) y = x >> 2;
~ (1’s complement) y = ~x;
- (2’s complement - negate) y = -x;

Check for equality - use ==
if (x == 5)

Check if two conditions true:
if ((x==5) && (y==10))

Check if either of two conditions true:
if ((x==5) || (y==10))

• Assign a name to a number
#define COUNT 5

• Include a header file (such as hcs12.h):
#include "hcs12.h"

• Declare a function: Tell what parameters it uses, what type of number it returns:
int read_port(int port);

• If a function doesn’t return a number, declare it to be type void
void delay(int num);

Hello, World!
• Here is the standard ”hello, world” program:

#include <stdio.h>
main()
{

printf("hello, world\r\n");
}

• To write the ”hello, world” program, you need to use the printf() function.

• The printf() function is normally a library function

• Our compiler does not have a library which includes the printf() function.

• DBug-12 has a built-in printf, which you can access in the following way:

#include "DBug12.h"
main()
{

DB12FNP->printf("hello, world\r\n");
asm(" swi");

}

• The above program is about 40 bytes long.

• Note that the DBug-12 printf() does not work for floating point numbers.

• You can access a few other standard C functions through DBug-12. Look at the
DBug12.h include file (on the EE 308 web page) to see which ones.

Programming the HC12 in C
• A comparison of some assembly language and C constructs

Assembly	C
; Use a name instead of a num | /* Use a name instead of a num */
COUNT: EQU 5 | #define COUNT 5

;---| /*-----------------------------*/
;start a program | /* To start a program */

org $1000 | main()
lds #0x3C00 | {

 | }
;---| /*-----------------------------*/

• Note that in C, the starting location of the program is defined when you compile the
program, not in the program itself.
• Note that C always uses the stack, so C automatically loads the stack pointer for you.

Assembly	C
;allocate two bytes for | /* Allocate two bytes for
;a signed number | * a signed number */

 |
 org $2000 |

i: ds.w 1 | int i;
j: dc.w $1A00 | int j = 0x1a00;
;---| /*-----------------------------*/
;allocate two bytes for | /* Allocate two bytes for
;an unsigned number | * an unsigned number */
i: ds.w 1 | unsigned int i;
j: dc.w $1A00 | unsigned int j = 0x1a00;
;---| /*-----------------------------*/
;allocate one byte for | /* Allocate one byte for
;an signed number | * an signed number */

 |
i: ds.b 1 | signed char i;
j: dc.b $1F | signed char j = 0x1f;

 |
Assembly | C
;---| /*-----------------------------*/
;Get a value from an address | /* Get a value from an address */
; Put contents of address | /* Put contents of address */
; $E000 into variable i | /* 0xE000 into variable i */

 |
i: ds.b 1 | unsigned char i;

 |
ldaa $E000 | i = * (unsigned char *) 0xE000;
staa i |

 | /*-----------------------------------*/
 | /* Use a variable as a pointer
 | (address) */

 |
 | unsigned char *ptr, i;

 |
 | ptr = (unsigned char *) 0xE000;

 | i = *ptr;
 | *ptr = 0x55;
 |

;---| /*-----------------------------*/

• In C, the construct *(num) says to treat num as an address, and to work with the
contents of that address.

• Because C does not know how many bytes from that address you want to work with,
you need to tell C how many bytes you want to work with. You also have to tell C
whether you want to treat the data as signed or unsigned.

– i = * (unsigned char *) 0xE000; tells C to take one byte from address 0xE000, treat it as
unsigned, and store that value in variable i.

– j = * (int *) 0xE000; tells C to take two bytes from address 0xE000, treat it as signed,
and store that value in variable j.

– * (char *) 0xE000 = 0xaa; tells C to write the number 0xaa to a single byte at addess
0xE000.

– * (int *) 0xE000 = 0xaa; tells C to write the number 0x00aa to two bytes starting at
addess 0xE000.

Assembly | C
;---| /*-----------------------------*/
;To call a subroutine | /* To call a function */

ldaa i | sqrt(i);
jsr sqrt |

;---| /*-----------------------------*/
;To return from a subroutine | /* To return from a function */

ldaa j | return j;
rts |

;---| /*-----------------------------*/
;Flow control | /* Flow control */

blo | if (i < j)
blt | if (i < j)

 |
bhs | if (i >= j)
bge | if (i >= j)

;---| /*-----------------------------*/
 |

• Here is a simple program written in C and assembly. It simply divides 16 by 2. It does
the division in a function.

Assembly	C

 |
org $2000 | unsigned char i;

i: ds.b 1 |
 |
 | unsigned char div(unsigned char j);

org $1000 | main()
lds #$3C00 | {
ldaa #16 | i = div(16);
jsr div | }
staa i |
swi |

 |
div: asra | unsigned char div(unsigned char j)
rts | {

 | return j >> 1;
 | }

