- Resets on the HC12
- Introduction to Interrupts on the 9512
- Huang Sections 6.1-6.3
- MCO9S12DP256B Device User Guide
o What happens when you reset the HC12?
o Using the Timer Overflow Flag to implement a delay on the
HC12
o Introduction to Interrupts
o How to generate an interrupt when the timer overflows
o How to tell the 9512 where the Interrupt Service Routine is
located
o Using interrupts on the HC12
o The 9S12 registers and stack when a TOF interrupt is received
o The 9S12 registers and stack just after a TOF interrupt is
received
o Interrupt vectors for the MC9S12DP256

What Happens When You Reset the HCS12?
» What happens to the HCS12 when you turn on power or push the reset button?
* How does the HCS12 know which instruction to execute first?

* On reset the HCS12 loads the PC with the address located at address OxFFFE and
0xFFFF.

* Here is what is in the memory of our HCS12:

o /1 (2 |3 (4 |5 |6 [7 |8 |9 |[A|B |C (D |E |F

FFF0 |F6 |EC|F6 |FO |F6 | F4 |[F6 |F8 | F6 |FC |F7 |00 [F7 104 | FO [00

* On reset or power-up, the first instruction your HCS12 will execute is the one located at
address 0xF000.

Using the Timer Overflow Flag to implement a delay

» The HCS12 timer counts at a rate set by the prescaler:

PR2:0 | Divide | Clock Freq Clock Overflow Period
Period

000 1 24 MHZ 0.042 ps 2.73 ms

001 2 12 MHZ 0.083 ps 5.46 ms

010 4 6 MHZ 0.167 ps 10.92 ms

011 8 3 MHZ 0.333 ps 21.85 ms

100 16 1.5 MHZ 0.667 ps 43.69 ms

101 32 750 MHZ 1.333 ps 87.38 ms

110 64 375 MHZ 2.667 us 174.76 ms

111 128 187.5 MHZ 5.333 ps 349.53 ms

* When the timer overflows it sets the TOF flag (bit 7 of the TFLG?2 register).

* To clear the TOF flag write a 1 to bit 7 of the TFLG2 register, and 0 to all other bits
of TFLG2:

TFLG2 = 0x80;

* You can implement a delay using the TOF flag by waiting for the TOF flag to be set,
then clearing it:

void delay(void)

{
while (TFLG2 & 0x80)==0); /* Wait for TOF */

TFLG2 = 0x80; /* Clear flag */
3

» If the prescaler is set to 010, you will exit the delay subroutine after 10.92 ms have
passed.

Problem: Can’t do anything else while waiting.

Solution: Use an interrupt to tell you when the timer overflow has occurred.

Introduction to Interrupts

Interrupt: Allows the HCS12 to do other things while waiting for an event to happen.
When the event happens, tell HCS12 to take care of event, then go back to what it was
doing.

What happens when HCS12 gets an interrupt: HCS12 automatically jumps to part of
the program which tells it what to do when it receives the interrupt (Interrupt Service
Routine).

How does HCS12 know where the ISR is located: A set of memory locations called
Interrupt Vectors tell the HCS12 the address of the ISR for each type of interrupt.

How does HCS12 know where to return to: Return address pushed onto stack before
HCS12 jumps to ISR. You use the RTI (Return from Interrupt) instruction to pull the
return address off of the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed onto stack before
jumping to ISR, and pulled off the stack before returning to program. When you execute
the RTT instruction at the end of the ISR, the registers are pulled off of the stack.

To Return from the ISR You must return from the ISR using the RTI instruction. The
RTI instruction tells the HCS12 to pull all the registers off of the stack and return to the
address where it was processing when the interrupt occurred.

How to generate an interrupt when the timer overflows

Vi

|] ros
o O

(BRT ol TRLGL addr ludF)

B — 155 Counber Drarkaw
P ook AR TONT { addr 44

TEM R
(BT of TSCRT, addr lnds)

PR
(Efta 200l TSCR2 addr ed Dy
TOF
Wi
(BRT of TFLG2, addr D4y Inbarmapt
TCH it 1Bt
TR oA
(BT ol THOEL addr 4Dy {Enaizs by dearing | bitwith CLIInak
(Enabiy by miing SRT of TSIRD
To generate a TOF interrupt: Inside TOF ISR:
Enable timer (set Bit 7 of TSCR1) Take care of event
Set prescaler (Bits 2:0 of TSCR2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Enable TCF interrupt (set Bit 7 of TSCR2) Return with RTI

Enable interrupts (clear I bit of CCR)

#include "hcsl12.h"

main ()
{
DDRR = 0xff; /* Make Port A output */
TSCR1 = 0xB80; /* Turn cn timer */
TSCR2 = 0x85; /* Enable timer overflow Iinterrupt, set prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
enable () ; /* Enable interrupts (clear I bit) */
while (1)

{
/* Do nothing */

}

void INTERRUPT toi isr(void)

{

PORTL + 1; /* Increment Port A */

0x80; /* Clear timer interrupt flag */

PORTA
TFLGZ

How to tell the HCS12 where the Interrupt Service Routine is located
* You need to tell the HCS12 where to go when it receives a TOF interrupt.
* You do this by setting the TOF Interrupt Vector.

* The TOF interrupt vector is located at 0OxXFFDE. This is in flash EPROM, and is very
difficult to change — you would have to modify and reload DBug-12 to change it.

* DBug-12 redirects the interrupts to a set of vectors in RAM, from 0x3E00 to
0x3E7F. The TOF interrupt is redirected to 0x3ESE. When you get a TOF interrupt, the
HCS12 initially executes code starting at 0OxXFFDE. This code tells the HCS12 to load the
program counter with the address in 0x3ESE. Because this address in RAM, you can
change it without having to modify and reload DBug-12.

* Because the redirected interrupt vectors are in RAM, you can change them in your
program.

How to Use Interrupts in C Programs

* For our C compiler, you can set the interrupt vector by including the file vectors12.h. In
this file, pointers to the locations of all of the 9212 interrupt vectors are defined.

* For example, the pointer to the Timer Overflow Interrupt vector is called

UserTimerOvf:

#define VECTOR_BASE 0x3E00
#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*
#define UserTimerOvf _VEC16(47)

You can set the interrupt vector to point to the interrupt service routine toi_isr() with the
C statement:

UserTimerOvf = (unsigned short) &toi_isr;

* Here is a program where the interrupt vector is set in the program:

#include <hcsl2.h>

#include <vectorsl2.h>
#include "DBugl2.h"

#define enable() asm(" cli")
#define disable() asm(" sei™)

void INTERRUPT toi isr(weid);

main ()
{
DDRE = 0xff; /* Make Port A output */
TSCR1 = 0x80; /% Turn con timer */
TSCR2 = 0xB86; /* Enable timer overflow interrupt, set prescaler */

/* s0 interrupt period is 175 ms */
TFLGZ2 = 0x80; J/* Clear timer Interrupt flag */

UserTimerOvE = (unsigned short) &toi isr;
enable () ; /* Enable interrupts (clear I bit) */
while (1)

{
/* Do nothing - go into low power mode */
1
H

void INTERRUPT toi isr (void)
{

PORTA PORTE+];
TFLGZ2 = 0x80; /* Clear timer interrupt flag */

How to Use Interrupts in Assembly Programs

* For our assembler, you can set the interrupt vector by including the file hes12.inc. In
this file, the addresses of all of the 9212 interrupt vectors are defined.

* For example, the pointer to the Timer Overflow Interrupt vector is called
UserTimerOvf:

UserTimerOvf equ $3ESE

You can set the interrupt vector to point to the interrupt service routine
toi_isr with the Assembly statement:

movw #toi_isr,UserTimerOvf

* Here is a program where the interrupt vector is set in the program:

#include "hcsl2.inc"
#define prog 51000

movw #tol_isr,UserTimerOvE ; Set interrupt vector
movh #5ff,DDRA
movb #580,T5CR1 ; Turn con timer
movhb #586, TSCR2 ; Enable timer overflow interrupt, set
;prescaler so interrupt period is 175 ms
movhb #5680, TFLG2 ; Clear timer interrupt flag
cli ; Enakble interrupts
11: wai ; Do nothing - go inte low power mode */
bra 11
toi isr:
inc PORTR
movh #580, TFLG2 ; Clear timer overflow interrupt flag
rti

Using interrupts on the HCS12
What happens when the HCS12 receives an unmasked interrupt?
1. It finishes current instruction.
2. Pushed all registers onto the stack.
3. Sets I bit of CCR.
4. Loads Program Counter from interrupt vector for particular interrupt.
Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer
* Done for you in C by the C startup code

2. Write Interrupt Service Routine

* Do whatever needs to be done to service interrupt
* Clear interrupt flag
* Exit with RTI

3. Load address of interrupt service routine into interrupt vector
4. Do any setup needed for interrupt

* For example, for the TOF interrupt, turn on timer and set prescaler
5. Enable specific interrupt.

6. Enable interrupts in general (clear I bit of CCR with cli instruction or
enable() function

Can disable all (maskable) interrupts with the sei instruction or disable()
function.

Interrupt vectors for the HCS12

* The interrupt vectors for the MC9S12D@G256 are located in memory from 0xFF80 to
OxFFFF.

* These vectors are programmed into Flash EEPROM and are very difficult to change
* DBugl2 redirects the interrupts to a region of RAM where they are easy to change
* For example, when the HCS12 gets a TOF interrupt:

— It loads the PC with the contents of 0OxXFFDE and 0xFFDF.

— The program at that address tells the HCS12 to look at address 0x3ESE and 0x3ESF.

— If there is a 0x0000 at these two addresses, DBugl12 gives an error stating that the
interrupt vector is uninitialized.

— If there is anything else at these two addresses, DBugl2 loads this data into the PC and
executes the routine located there.

— To use the TOF interrupt you need to put the address of your TOF ISR at addresses
0x3ESE and 0x3ESF.

Commonly Used Interrupt Vectors for the MC9S12DG256

Interrupt Specific General | Normal DBug-12
Maslk Maslk Vector Vector
SPIZ2 SP2CR1 (SPIE, SPTIE) I FFBC, FFBD | 3E3C, 2E3D
2PI1 SP1CR1 (SPIE, 2PTIE) I FFBE, FFBF | 3E3E, 2E3F
IIC IECR (IBIR) I FFCO, FFC1 | 3E40, 3E41
EDLC DLCECR (IE) I FFC2, FFC3 | 3E42, 3E43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFC5 | 3E44, 3E46
CRG Lock CRGINT (LOCKIE) I FFC&, FFCT | 3E46, 3EAT
Pulse Acc B Overflow PECTL (PBOVI) I FFC&, FFC9 | 3E48, 3E49
Mod Down Ctr UnderFlow MCCTL (MCZI) I FFCA, FFCB | 3E44, 3E4E
Port H PTHIF (PTHIE) I FFCC, FFCD | 3EAC, 3E4D
Port 1 PTIIF (PTJIE) I FFCE, FFCF | 3E4AE, 2E4F
ATD1 ATD1CTLZ (ASCIE) I FFDO, FFD1 | 3EB0, 3EB1
ATDO ATDOCTLZ (ASCIE) I FFD2, FFD3 | 3EB2, 32EL3
3CI1 SC1CR2 I FFD4, FFD5 | 3EB4, 3EEE
(TIE, TCIE, RIE, ILIE)
3CIO0 SCOCR2 I FFD&, FFD7 | 3EB6, 3EET
(TIE, TCIE, RIE, ILIE)
2PIO SPOCR1 (SPIE) I FFD&, FFD9 | 3EE8, 32ELS
Pulse Acc A Edge PACTL (PAI) I FFDA, FFDB | 3EBA, 2EEE
Pulse Acc A Overflow PACTL (PAODVI) I FFDC, FFDD | 3E5C, 2ESD
Enh Capt Timsr Overflow TSCR2 (TOI) I FFDE, FFDF | 3ESE, 2ESF
Enh Capt Timer Channel 7 TIE (CTI) I FFE0, FFE1 | 3E60, 2E61
Enh Capt Timer Channel & TIE (C&I) I FFE2, FFE3 | 3E62, 2E62
Enh Capt Timer Channel 5 TIE (C5I) I FFE4, FFE5 | 3E64, 2E65
Enh Capt Timer Channel 4 TIE (C4I) I FFEG, FFE7 | 3E66, 2E67
Enh Capt Timer Channel 3 TIE (C3I) I FFE&, FFE2 | 3E68, 3E69
Enh Capt Timer Channel 2 TIE (C2I) I FFEA, FFEB | 3E6A, 32EGE
Enh Capt Timer Channel 1 TIE (C1I) I FFEC, FFED | 3E6C, 32E6D
Enh Capt Timer Channel 0 TIE (COI) I FFEE, FFEF | 3E6E, 23E6F
Real Tims CRGINT (RTIE) I FFF0, FFF1 | 3E70, 2E71
IRQ IROCR (IRQEN) I FFF2, FFF3 | 3E72, 2E72
XIRQ (None) X FFFF, FFFF | 3E74, 2E75
SWI (None) (None) FFF&, FFFT7 | 3E76, 3E77
Unimplemented Instructicn | (None) (None) FFF2, FFF9 | 3ET&8, 2E79
COP Failure COPCTL (None) FFFA, FFFB | 3ETA, 2E7E
(CR2-CRO COP Rate Select)
COP Clock Moniotr Fail PLLCTL (CME, SCME) (None) FFFC, FFFD | 3E7C, 2E7D
Rezet (None) (None) FFFE, FFFF | 3ETE, 2E7F

