« The Real Time Interrupt
* Huang Section 6.6
* CRG Block User Guide
o Exceptions on the 9512

o Using interrupts on the 9S12

o The Real Time Interrupt on the 9512

Using Interrupts on the 9S12

What happens when the 9S12 receives an unmasked interrupt?

1. Finish current instruction
2. Clear instruction queue

3. Calculate return address

4. Push Return Address, Y, X, A, B, CCR onto stack (SP is decremented by 9)

SP After Inb— -~ R
B
A
Xn
o’
*u
L
RNy
RINT,
SP Before It — =

5. Set I bit of CCR

6. If XIRQ interrupt, set X bit of CCR

Higher Addresses

7. Load Program Counter from interrupt vector for highest priority interrupt which is

pending

8. The following (from theMC9S12DG256 Device User Guide) shows the exception
priorities. The Reset is the highest priority, the Clock Monitor Fail Reset the next highest,
etc.

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source ﬁgg‘(Local Enable H&Ré%ﬁgllge
$FFFE, $FFFF Resat MNone None -
$FFFC, SFFFD Clock Monitor fail reset Mane PLLCTL (CME, SCME) -
§FFFA, FFFB COP failure reset MNone COP rate selact -
$FFFA, $FFF9 Unimplemantad instruction trap Mane MNone -
$FFFE, $FFFT SWI MNone None -
$FFF4, $FFFS XIRQ X-Bit MNone -
$FFF2, $FFF3 1RG 1-Bit IRQCRH (IRQEN) FF2
$FFFO, BFFF1 Real Time Intermipt 1-Bit CRGINT (RTIE) FFO
$FFEE, $FFEF Enhanced Capture Timer channel O 1-Bit TIE (CO1) FEE
$FFEC, $FFED Enhanced Capture Timer channal 1 1-Bit TIE (CAl) FEC
$FFEA, $FFEB Enhancad Capture Timer channal 2 1-Bit TIE {C21) FEA
$FFES, $FFES Enhancad Capture Tirmer channal 2 1-Bit TIE {C3l) FEA
$FFEG, $FFET Enhanced Capture Timer channel 4 1-Bit TIE (C41) FEE
$FFE4, $FFES Enhanced Capture Timer channel 5 1-Bit TIE (C&l) FE4
$FFE2, $FFE3 Enhanced Capture Timer channel & 1-Bit TIE (C&l) FE2
$FFED, $FFE1 Enhanced Capture Timer channal 7 1-Bit TIE (C71) FEQ
$FFDE, $FFDF Enhanced Capture Timar over aw 1-Bit TSRC2 (TOF) EDE
$FFDC, $FFDD Pulse accurnmulator A over ow 1-Bit PACTL (PACW) FDC
$FFDA, $FFDBE Pulse accurmulator input edge 1-Bit PACTL (PAl) FDA
FFFD8, $FFD9 SPI0 1-Bit SPOCR1 (SPIE, SPTIE) 3De
$FFDB, $FFD7 BCI0 I-Bit TIE, Rt LE) $D6
FFFD4, $FFDS SCH 1-Bit (TIE, T%?I;CFﬁEI; ILIE) 04
FFFDZ, $FFD32 ATDO 1-Bit ATDOCTLZ (ASCIE) sD2

FFFaE

FFFD0, BFFDA ATDA 1-Bit ATDACTL2 (ASCIE) 300
$FFCE, §FFCF Port J 1-Bit PTJIF (PTJIE) FCE
$FFCC, SFFCD Port H 1-Bit PTHIF{PTHIE) FCC
SFFCA, SFFCR Modulus Down Counter under ow 1-Bit MECTL{MCZIL) BCA
$FFCB, $FFCa Pulze Accumnulator B Over o w |-Bit PECTL{PBOWI) FCa
FFFCE, $FFCT CRG PLL lock 1-Bit CRGINT{LOCKIE) FCE
FFFC4, $FFCS CRG Self Clock Mada 1-Bit CRGINT (SCMIE) FC4
FFFCE, $FFC3 BOLC 1-Bit DLCBCRAIE) FC2
FFFCO, $FFCA G Bus 1-Bit IBCR (IBIE) FC0
$FFBE, $FFBF SPH 1-Bit SP1CR1 (SPIE, SPTIE) 3BE
FFFBC, $FFBD sPI2 1-Bit SP2CR1 (SPIE, SPTIE) FBC
FFFEA, iFFERB EEPROM 1-Bit ECNFG [CCIE, CBEIE) FBA
$FFE2, JFFED FLASH 1-Bit FCMFG (CCIE, CBEIE) $B&
FFFBEG, SFFET CAND waks-up 1-Bit CANORIER (WUPIE) $BE
$FFB4, $FFBS CAND errors I-Bit | CANORIER (CSCIE, OVRIE) $B4
$FFBZ, $FFB3 CANO receive 1-Bit CANORIER (RXFIE) $B2
$FFB0, $FFB1 CANO transmit 1-Bit | CANOTIER (TXEIE2-TXEIED) $BO
FFFAE, $FFAF CANT wake-up 1-Bit CANARIER (WUPIE) FAE
FFFAC, $FFAD CANA errors I1-Bit | CAN1RIER (CSCIE, OVRIE) FAC
FFFAA, SFFAR CAMN receive 1-Bit CAN1RIER (RXFIE) FAA
FFFAR, §FFAQ CAN1 transmit I1-Bit | CAN1TIER (TXEIE2-TXEIED) FA8

|sFFas, sFFa7

- FFFA4, §FFAS

- $FFAZ, §FFAZ

| FFFAD, $FFA1 o

$FFOE, $FFOF

[sFFoc, sFFop |

|FFoa, sFFoB

|sFFos, sFFoo |

FFFa6, $FFST CAN4 waks-up 1-Bit CAN4RIER (WUPIE) Fo6
FFFa4, $FFO5 CAN4 errors I1-Bit | CAMN4RIER (CSCIE, OVRIE) Fo4
$FFO2, $FFO3 CAN4 receive 1-Bit CAN4RIER (RXFIE) Fo2
FFFa0, $FFO1 CAN4 transmit I1-Bit | CANATIER (TXEIE2-TXEIED) $80
$FFEE, $FFaF Port P Interrupt 1-Bit FTRIF (PTPIE) $2E
FFFEC, $FFaD PWM Emergency Shutdown 1-Bit PWMSDN (PWMIE) Fac
FFFE0 to —

The Real Time Interrupt

* Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the
processor at a regular interval.

* Information on the Real Time Interrupt is in the CRG Block User Guide.

* There are two clock sources for 9512 hardware.
— Some hardware uses the Oscillator Clock. The RTI system uses this clock.
* For our 9512, the oscillator clock is 8 MHz.
— Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow
Interrupt) use this clock.
e For our 9S12, the bus clock is 24 MHz.

VoL
ATIF
. a * R
05C Clock - TOLLAS 6L : 1.3,%4...,18
allz RTR&:4(RTICTL) RTR :3{RTICTL)
1Bt
o RTE Eit CCR
Writs CRGIMT
CRGFLG

* The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the
CRGINT register.

* When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.
— To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG
register.

* The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register. The
RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits are the
Modulus Counter Select bits to provide additional graunularity.

lnbgrrapl

7] 5 4 3 2 1 0
vo| RmE) C LOCKE |—2 L SCMIE -
RESET: 0 7 i] 0 7 9 0

[] =Unimplemented or Reserved
Figure 3-5 CRG Interrupt Enable Register (CRGINT)

Read: anytime
Write: anytime

RTIE — Real Time Interrupt Enable Bit.
1 = Interrupt will be requested whenever RTIF is set.
0 = Interrupt requests from RTT are disabled.

T L] 5 4 3 2 1]
WK CK [T
oo| R | oR C | lockr |LOCK | TRACK Fogpye | SCM
RESET: T 0 7 Y 0 0 0
[] =Unimplemented or Reserved
NOTES:

1. PORF is =&t to 1 when a power on reset occurs. Unaffected by non-POR resets.

Figure 3-4 CRG Flags Register (CRGFLG)

Read: anytime
Write: refer to each bit for individual write conditions
RTIF — Real Time Interrupt Flag

RTIF i1s sef to 1 at the end of the RTI period. This flag can only be cleared by writing a 1. Writing a 0
has no effect. If enabled (RTIE=1), RTIF causes an intermpt request.

1 = RTI time-out has cccurred.

0 = RTI time-out has not yet occurred.

7 6 5 4 3 2 1 0

":' C RTRE RTRS RTR4 RTR2 RTR2 RTR1 RTRO
RESET: [y] [y] 4 0 4 0

[] =Unimplemented or Reserved
Figure 3-8 CRG RTI Control Register (RTICTL)

Read: anytime
Write: anytime

NOTE.: A write to this register initializes the RTT countar.
RTR[6:4] — Real Time Interrupt Prescale Rate Select Bits

These bits select the prescale rate for the RTI See Table 3-2.

RTR[3:0] — Real Time Interrupt Modulus Counter Select Bits

These bits select the modulus counter target value to provide additional granularity. Table 3-2 shows
all possible divide values selectable by the RTICTL register. The source clock for the RTT1s OSCCLE.

Table 3-2 RTI Frequency Divide Rates

RTR[3:0] RTR[6:4] =
000 001 010 o1 100 101 110 111
OFF) | @9 | @M [@3 | @9 | @9 | @9 | @9
0000 (+1) OFF* 510 511 212 213 914 218 518
0001 (+2) OFF* 2210 22" 2x2" 22" 2x2™ 2x213 2210
0010 (+3) OFF* a2'? a2 322 aah 3x214 32" ax21®
0011 (+4) OFF* 4210 4x2M 4x212 4213 43214 4x21% 4x218
0100 (+5) OFF* 5210 g2 x212 5213 Fx214 Ey21% 5y218
0101 (+6) OFF* x2'0 fix2"" 6122 212 Gx2'* 61213 Bx218
0110 (=7) OFF* 7210 7x2' 7x212 7213 7x2'4 7x213 7218
0111 (=8) OFF* Bx2'? axa’ 8x2" a2 Bx2'4 8x2'% Bx21°
1000 (+9) OFF* gy2'? g2 9212 gy213 ox2'4 gx2'% gy21®
1001 (+10) OFF* 10x2'0 [10x2" | 10x272 | 10x2'3 | 10x2'* | 10x278 | 10x2'¢

* To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register.

— In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to the
RTIF bit of the CRGFLG register.

* The following table shows all possible values, in ms, selectable by the

RTICTL register (assuming the system uses a 8 MHz oscillator):

RTR 3:0 RTER &:4

Q00 001 010 011 100 101 110 111

(0l (1) (2) (3) i4) (5) (61 (7)
0000 (0) |Off |0.128 |0.266 | 0.512(1.024(2.048| 4.096 g.192
0001 (1) |Off |0.266 |0.612|1.204 (2.048(4.096| B8.192| 16.384
0010 (2) |Off |0.384 (0.788|1.636(3.072(&.144 | 12.288 | 24.578
0011 (3) |Off |0.512(1.024 | 2.048(4.096(=2.192|16.384 | 32.768
0100 (4) |(Off |0.640 (1.280 | 2.860(5.120(10.240 | 20.480 [40,980
0101 (&) [Off [0.768 |1.636 |3.072| 6.144|12.258 | 24.6570 | 49.152
0110 (6) |Off |0.895 | 1.792|3.684 | 7.168(14.336 | 28.672 | &7.344
0111 (7) |Off |1.024 (2.048|4.095(8.192(15.384 | 32.768 | 65.538
1000 (8) [Off [1.152 | 2.304 [4.608 | 9.216 | 18.432 | 36.864 | 73.728
1001 (9) [0ff |1.280 (2,660 |5.120(10.240 [20.480 | 40.960 | 81,920
1010 (A) [Dff |1.408 (2,816 | 65.632 [11.264 [22.528 | 45,066 | 90,112
1011 (B) [Off |1.536 [3.072|6.144 | 12.288 |24 .576 | 49.162 | 298.304
1100 (C) [0ff |1.664 (3.328 | 6.656(13.312 [25.624 | 53.248 | 106. 498
1101 (D) [Off (1.729 |3.684 [7.168 | 14.336 | 28.672 | 657.344 | 114. 688
1110 (E) [Off |1.920 (3.840 | 7.680 | 15.360 | 30.720 | 61.440 | 122, 880
1111 (F) |Dff |2.048 (4.096 | 8.192 | 16.384 [32.768 | 65,536 | 131.072

* Here is a C program which uses the Real Time Interrupt:

#include "hcsl2.h"

#include "vectorslZ.h"
#include "DBugl2.h"

#define enable() asm(™ cli"™)
void INTERRUFT rti isr(veid):

main ()
{
DDRE = Oxff;
PORTR = (;
RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enakble RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti isr:
enable () ;
while (1)
{
asm(" wai"); /* Do nothing -- wait for interrupt */
}
}
void INTERRUFT rti isr(void)
{
PORTE = PORTAR + 1;
CRGFLE = 0x80;
}

* Note that in the above program, the do-nothing loop has the instruction

asm("'wai'"); /* Do nothing -- wait for interrupt */

The assembly-language instruction WAI (Wait for Interrrupt) stacks the registers and
puts the 9S12 into a low-power mode until an interrupt occurs.

* This allows the 9S12 to get into the ISR more quickly (because the time needed for
pushing the registers on the stack has already been done), and lowers the power
consumption of the 9S12 (because it doesn’t have to execute a continuous loop while
waiting for the interrupt).
What happens when a 9S12 gets in unmasked interrupt:
1. Completes current instruction
2. Clears instruction queue
3. Calculates return address
4. Stacks return address and contents of CPU registers
5. Sets I bit of CCR
6. Sets X bit of CCR if an XIRQ interrupt is pending

7. Fetches interrupt vector for the highest-priority interrupt which is pending

8. Executes ISR at the location of the interrupt vector

What happens when a 9512 exits an ISR with the RTI instruction:

1. If no other interrupt pending,
(a) 9S12 recovers stacked registers
(b) Execution resumes at the return address

2. If another interrupt pending
(a) 9S12 stacks registers
(b) Subtracts 9 from SP
(c) Sets I bit of CCR
(d) Sets X bit of CCR if an XIRQ interrupt is pending
(e) Fetches interrupt vector for the highest-priority interrupt which is pending
(f) Executes ISR at the location of the interrupt vector

Capturing the Time of an External Event

* One way to determine the time of an external event is to wait for the event to occur, the
read the TCNT register:

* For example, to determine the time a signal on Bit 0 of PORTB changes from a high to
a low:

while (PORTB & 0x01) !=0) ; /* Wait while Bit 0 high */
time = TCNT; /* Read time after goes low */

* Two problems with this:

1. Cannot do anything else while waiting
2. Do not get exact time because of delays in software

* To solve problems use hardware which latches TCNT when event occurs, and generates
an interrupt.

* Such hardware is built into the 9512 — called the Input Capture System

Measure the time between two events

T T
-
1 1

How to measure At?
Wait until signal goes low, then measure TCNT

while (PORTB & 0x01) == 0x01) ;
start = TCNT;

while (PORTB & 0x02) == 0x02) ;
end = TCNT;

dt = end - start;

Problems: 1) May not get very accurate time
2) Can’t do anything while waiting for signal level to change.

5 =
|

S — -

|||—

- |
-

[S,

Solution: Latch TCNT on falling edge of signal
Read latched values when interrupt occurs

The 9S12 Input Capture Function

* The 9S12 allows you to capture the time an external event occurs on any of the eight
PORTT pins.

» An external event is either a rising edge or a falling edge

* To use the Input Capture Function:

— Enable the timer subsystem (set TEN bit of TSCR1)

— Set the prescaler

— Tell the 9S12 that you want to use a particular pin of PORTT for input capture
— Tell the 9S12 which edge (rising, falling, or either) you want to capture

— Tell the 9S12 if you want an interrupt to be generated when the capture occurs

A Simplified Block Diagram of the 9512 Input Capture Subsystem

Port T Pin x set up as Input Capture (IOSx = 0 in TIOS)

15 Bt Counter

Eus Clook Prastakr
TCHT
Captes: Toe
PORTT Pinx Edgs .]
EDGx DA Register
(TCTLa A CaF
Voo
00: Dissbls Read
0l Risang TRLG
11: Eithar 0 o . [r—
(=] I Bt
TIE CCR
CaF
Write
TRLG1

Registers used to enable Input Capture Function (see ECT Block User Guide)

Write a 1 to Bit 7 of TSCR1 to turn on timer

BITT 6 5 4 3 2 BEITO
R 0 4] 0
TEM TSWAI TSFRZ TFFCA PRNT
RESET: i} o o 1] a o 1] o

= Unimplementad or Ressrved
Figure 3-6 Timer System Control Register 1 (TSCR1)
Read or write anytime except PRINT bit 1s write once All bits reset to zero.

TEN — Timer Enable

0 = Disables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer to function normally.

To turn on the timer subsystem: TSCR1 = 0x80;

BITT g 5 4 2 2 1 BITO
R 0 0 0
TOI TCRE PR2 FR1 PRO
W
RESET: 0] 0] 0] 0]

= Unimplemented or Resarved
Figure 3-11 Timer System Control Register 2 (TSCR2)

PR2. PR1. PROD - Timer Prescaler Select

These three bits specify the division rate of the main Timer prescaler when the PRINT bit of register
TSCRI 1z setto "0". The newly selected prescale factor will not take effect until the next synchromized
edge where all prescale counter stages equal zero.

Set the prescaler in TSCR2

Make sure the overflow time is greater than the time difference you want to measure

PR2 PR1 PRO Period (ps) Overflow (ms)
0 0 0 0.0416 2.73
0 0 1 0.0833 5.46
0 1 0 0.1667 10.92
0 1 1 0.3333 21.84
1 0 0 0.6667 43.69
1 0 1 1.3333 86.38
1 1 0 2.6667 174.76
1 1 1 5.3333 349.53
To have overflow rate of 21.84 ms:
TSCR2 = 0x03;
BITT 5] 5 4 3 2 1 BITD
E‘ 1057 ‘ 1056 ‘ D55 | 1054 | 1053 ‘ 1052 ‘ D51 | 1050 |
RESET: [u] o o o [u] [u] o o

Figure 3-1 Timer Input Capture/Qutput Compare Register (TIOS)

Read or write anytime.
All bits reset to zero.
TOS[7:0] — Input Capture or Output Compare Channel Configuration

0 = The corresponding channel acts as an mput capture.
1 = The corresponding channel acts as an output compare.

To make Pin 3 an input capture pin: TIOS = TIOS & ~0X08;

Write to TCTL3 and TCTL4 to choose edge(s) to capture

BIT7 3] 5 4 3 2 1 BITO
R
W EDGTE EDGTA EDGEB EDGEA EDGE3 EDGEA EDG4B EDG4A
RESET: 0 o [u] a 0 0 o [u]
BITT 8] 4 3 2 1 BITD
q
W EDG3B EDG3A EDGZB EDG2A EDG1B EDG1A EDGODB EDGDA
RESET:] 0 o a 0 [u] 0 0

Figure 3-8 Timer Control Register 3/Timer Control Register 4 (TCTL3/TCTL4)

Read or write anytime.

All bits reset to zero.

EDGxB, EDGxA — Input Capture Edge Control

Table 3-3 Edge Detector Circuit Configuration

EDGxE | EDGxA Configuration
a a Capturs disabled
a 1 Capiure on rising edges only
1 | Capture on falling edges only
1 1 Capture on any edge (rising or falling)

To have Pin 3 capture a rising edge:
TCTL4 = (TCTL4 | 0x40) & ~0x80;

When specified edge occurs, the corresponding bit in TFLG1 will be set.
To clear the flag, write a 1 to the bit you want to clear (0 to all others)

BITT = 5 4 3 2 i BITD
R
W C7F CarF C5F CaF C3F CaF C1F CoF
RESET: 0 0 [u] a 0 0 o]

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

CTF—COF — Input Capture/Output Compare Channel “x” Flag

A CxF flag is set when a corresponding input capture or output compare is detected. COF can also be
set by 16-bit Pulse Accumulator B (PACB). C3F-COF can also be set by 8-bit pulse accumulators
PAC3-PACD.

If the delay counter is enabled, the CxF flag will not be set until after the delay.

To wait until rising edge on Pin 3: while ((TFLG1 & 0x08) == 0);

To clear flag bit for Pin 3: TFLG1 = 0x08;
BITT 5] 5 4 3 2 BITD
R C7l cal CEl C4] cal c21 C1l col
'
RESET: o o o o] o o a

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.
All bits reset to Zero.
The bits C7I-COI correspond bit-for-bit with the flags in the TFLG1 status register.

CTI-COI — Input Capture/Output Compare “x” Interrupt Enable
0 = The corresponding flag is disabled from causing a hardware interrupt.
1 = The corresponding flag is enabled to cause an interrunt.

To enable interrupt on Pin 3: TIE = TIE | 0x08;
To determine time of specified edge, read 16—bit result registers TCO thru TC7
To read time of edge on Pin 3:

unsigned int time;
time = TC3;

