- The 9S12 A/D converter
- Huang Section 12.3-12.4
- ATD_10B8C Block User Guide

Analog/Digital Converters

» A 10-bit A/D converter is used to convert an input voltage. The reference voltages are
VRL =0V and VRH =5V.
— What is the quantization level of the A/D converter?

AV = (VRH - VRL)/2b =488 mV
* If the value read from the A/D converter is Ox15A, what is the input voltage?
Vin = Vie + [(Vra — Vr)/2°*ADvalue = 0 V + 4.88 mV x 346 = 1.6894 V

» The HCS12 has two 10-bit A/D converters (ATDO and ATD1).
— Each A/D converter has an 8-channel analog mulitplexer in front of it, so each
channel can convert 8 analog inputs (but not at exactly the same time).

» ATDO uses the eight bits of Port ADO, called PAD0OO through PAD0O7
— Ports ADO and AD1 of ATDO are used by DBug-12 at startup to determine
whether to execute DBug-12, or to run code from EEPROM of the bootloader.

* ATD1 uses the eight bits of Port AD1, called PADOS8 through PADI15
(9S12DT256DGV3.pdf)

The HCS12 Analog/Digital Converter
» We will discuss only ATD0. ATDI is identical.

» ATDO is an eight-channel 10-bit A/D converter.
— The A/D converter can also be used in 8-bit mode.

* There are eight inputs to the A/D converter.

* The inputs are fed through a multiplexer to the single A/D converter.

* There are inputs on the HCS12 for the reference voltages Vi and Vry
— In normal operation Vg, =0 V and Vrkg=5 V.

— You must have Vss < VRL < VRH < VDD.
— The accuracy of the A/D converter is guaranteed only for Vry — Ve =5 V.

file:///C:/Hector/EE 308 08/www/308_07/9S12DT256DGV3.pdf

* When using the A/D converter, you can choose between performing single or
continuous conversion on a single channel or multiple channels.

» The AD conversion results are stored in the registers ATDODRO through ATDODR7
— You can choose whether to have the results left-justified or right justified.

* To program the HCS12 A/D converter you need to set up the A/D control registers
ATDOCTL2, ATDOCTL3, ATDOCTL4 and ATDOCTLS

* The registers ATDOCTLO and ATDOCTL1 are used for factory test, and not used in

normal operation.

* When the AD converter is not used, Port ADO can be used for general purpose input
— Register ATDODIEN is used to set up Port ADO pins for use as a general purpose

inputs.

— The values on the pins are read from PORTADO.

PADOD
PADOT
PALOZ
PADO3
PADO4
PALOS
PALOS
PADAT

PADDD
PADD
PADO2
PADO3
PADD.
PADOS
PADDG
PADIT

MULT = 0
T
— ATmORt
—{_armesr
, L — ATDR3
AD — aTpIRA
— ATIORS
—_aTpees
— atmemr
@aly one channel, desermined by GO CE GA
| | | Single or cominsous comversion
CCCE CA 110 8 comershons, numbsr dereemined by S1C, S2C, S4C, S9C
MULT =1

ATDORD
ATDIR1

ATDRI2
ATDRIZ
ATDRM

_/

AD

ATDROS
ATDRIS
ATDRIT

Seversl Channsls
Staning channel gz rmined by CCCB O
1to 8 come rslons, number derermined by S1C, 520, S4C, 50C

ATDOCTL2 | ADPU | AFFC | ASWAI | ETRIGLE | ETRIGLP | 0 | ASCIE | ASCIF |

ATDOCTL3 [0 |

S8C

S4C

| s2¢ | sic | FIFO | FrRz1 | FrRZ0 |

ATDOCTL4 | SRES8 | sSMP1 | sMP0 | PRS4 | PRS3 | PRS2 | PRSI | PRSO |

ATDOCTL5 | DIM [DSGN | SCAN [MULT | o [cc | ¢cB | cA |

ATDOCTL2 | ADPU | AFFC | ASWAI | ETRIGLE | ETRIGLP | 0 | ASCIE | ASCIF |

To Use A/D Converter:

ADPU = 1 (Power up A/D)

ETRIGLE ETRIGP External Trigger
0 0 Falling edge
0 1 Rising edge
1 0 Low level
1 1 High level

ASCIE =0 => disables ATD interrupt
ASCIE = 1 => enables ATD interrupt on sequence complete (ASCIF = 1)

ASCIF =0 =>no ATD interrupt occurred
ASCIF = 1 => ATD sequence complete

ATDOCTL3 | 0 | s8¢ | s4c | s2¢c | sic | FIFO | FrRzl | FRZO |

S8C, S4C, S2C, S1C: Number of conversions per sequence: 0001 — 0111 (1 to 7)

ATDOCTL4 | SRES8 | SMP1 | sMPo | PRS4 | PRS3 | PRS2 | PRSI | PRSO |

SRESS =0 => 10 Bit Mode
SRES8 =1 => 8 Bit Mode

SMP1 & SMPO: select sample time bits
Always use 00 => 2 A/D conversion clock periods

SMP1 SMPO0 Length of 2" Phase of Sample Time
0 0 2 A/D conversion clock periods
0 1 4 A/D
1 0 8 A/D
1 1 16 A/D

PRS4- PRSO are prescaler bits to set the conversion clock frequency

ATDclock=[bus clock]/(PRS+1)*0.5

PRS4 - PRS0 Total Divisor Value Max Bus Clock Min Bus Clock
00000 by 2 4 MHz 1 MHz
00001 by 4 8 MHz 2 MHz
00010 by 6 12 MHz 3 MHz
00011 by 8 16 MHz 4 MHz
00100 by 10 20 MHz 5 MHz
00101 by 12 24 MHz 6 MHz
00110 by 14 28 MHz 7 MHz
00111 by 16 32 MHz 8 MHz

The ATD conversion frequency must be between 500 kHz and 2 MHz.

ATDOCTL5 | DIM [DSGN | scaN [MUuLT | o [cc | ¢cB | cA |

DJM = 0 => Left justified data in the result registers
DJM = 1 => Right justified data in the result registers

DSGN = 0 => Unsigned data in the result registers
DSGN = 1 => Signed data representation in the result registers (only for left justified)

SCAN = 0 => Single conversion sequence
SCAN = 1 => Convert continuously

MULT = 0 => Sample only one channel
MULT = 1 => Sample across several channels

CC CB CA Analog Input Channel
0 0 0 ANO
0 0 1 AN1
0 1 0 AN2
0 1 1 AN3
1 0 0 AN4
1 0 1 ANS5
1 1 0 AN6
1 1 1 AN7

ATDOSTATO | SCF| o0 [EOTRF|[FIFOR| o [cc2 | cc1 | cco |

SCF Flag is set after a sequence of conversions is complete
The SCF Flag is cleared when ATDOCTLS is written, or by writing a 1 to the SCF bit

After writing to ATDOCTLS, SCF flag cleared and conversions start

Using the HCS12 A/D converter
1. Power up A/D Converter (ADPU =1 in ATDOCTL?2)

2. Select number of conversions per sequence (S8C S4C S2C S1C in ATDOCTL?3)
S8C S4C S2C S1C=0001 to 0111 for 1 to 7 conversions
S8C S4C S2C S1C = 0000 or Ixxx for 8 conversions

3. Setup ATDOCTL4
* For 8-bit mode write 0x85 to ATDOCTL4
* For 10-bit mode write 0x05 to ATDOCTL4
* Other values of ATDOCTL4 either will not work or will result in slower A/D
conversion rates

4. Select DJM in ATDOCTLS
(a) DJM = 0 => Left justified data in the result registers
(b) DIM = 1 => Right justified data in the result registers

5. Select DSGN in ATDOCTLS
(a) DSGN = 0 => Unsigned data representation in the result register
(b) DSGN =1 => Signed data representation in the result register

The Available Result Data Formats are shown in the following table:

SRESS8 DJM DSGN RESULT DATA FORMAT
1 0 0 8-bit/left justified/unsigned — Bits 15-8
1 0 1 8-bit/left justified/signed — Bits 15-8
1 1 X 8-bit/right justified/unsigned — Bits 7-0
0 0 0 10-bit/left justified/unsigned — Bits 15-6
0 0 1 10-bit/left justified/signed — Bits 15-6
0 1 X 10-bit/right justified/unsigned — Bits 9-0

6. Select MULT in ATDOCTLS:
* MULT = 0: Convert one channel the specified number of times
— Choose channel to convert with CC, CB, CA of ATDOCTLS.
* MULT = 1: Convert across several channels. CC, CB, CA of ATDOCTL is the
first channel to be converted.

7. Select SCAN in ATDOCTLS:
* SCAN = 0: Convert one sequence, then stop
* SCAN = 1: Convert continuously

8. After writing to ATDOCTLS, the A/D converter starts, and the SCF bit is cleared. After
a sequence of conversions is completed, the SCF flag in ATDOSTATO is set.
* You can read the results in ATDODRX.

9. If SCAN =0, you need to write to ATDOCTLS to start a new sequence. If SCAN =1,
the conversions continue automatically, and you can read new values in ADRx.

10. To get an interrupt after the sequence of conversions are completed, set ASCIE bit of
ATDOCTL2. After the sequence of conversions, the ASCIF bit in ATDOCTL2 will be set,
and an interrupt will be generated.

11. On HCS12 EVBU, ADO channels 0 and 1 are used to determine start-up program (D-
Bugl2, EEPROM or bootloader). Do not use ADO channels 0 or 1 unless absolutely
necessary (if you need more than 14 A/D channels).

12.
ATDODRX =(Vi, — Vro)/(Vrn — Vre) X 1024
Normally, Ve =0V, and Vrn =5V, so
ATDODRx =Vi/5 V x 1024

Example: ATDODRO =448 =>V;,=2.19V

13. To use 10-bit result, set ATDOCTL4 = 0x05 (Gives 2 MHz AD clock with 24 MHz
bus clock, 10-bit mode).

14. You can get more accuracy by averaging multiple conversions. If you need only one
channel, set MULT = 0, set S8C, S4C, S2C, S1C, bits for eight conversions, then
average all eight result registers. The following assumes the data was right justified:

int avg;

avg = (ATDODRO + ATDODR1
ATDODR2 + ATDODR3
ATDODR4 + ATDODRS5
ATDODR6 + ATDODR7) >> 3;

Signal Amplitude

1 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (seconds)

A sinusoidal signal with Gaussian noise embedded in it, and an averaged signal

/* Read temperature from PAD4. Turn on heater if temp too low,

* turn off heater 1f temp too high. Heater connected to Bit 0

* of Port A.

=

#include "hcsl2.h"

tdefine TRUE 1

#define SET POINT 72 /* Temp at which to turn heater on or off */

main()

{

ATDOCTL2 = 0xB80; /* Power up A/D, nco interrupts */
ATDOCTL3 = 0x00; /* Do eight conversiocns */
ATDOCTL4 = 0xB83; /* &-bit mode */

ATDOCTLS = OxRB4; /* 1 01 00100

|
|
| \ Bit 4 of Port AD
\ MULT = 0 => one channel only
Scan 1 => continuous
DSGN = 0 => unsigned

DJM = 1 => right justified

1
1
1
||
||
|\
\

*/
/***1"'ﬁ":i"ﬁ'*'ﬁ":-i":ﬁ'****'ﬁ":i"ﬁ":i":E'*':E":-i":ﬁ'****'ﬁ":i":ﬁ'*':E'*':E’75":i'***':-i":ﬁ'****'ﬁ'********************/
DDRE = 0xff; /* Make Port A ocutput */

PORTE = 0x00; /* Turn off heater */

z,"':i"i"i’*'.i"!".i":i’i’i’*i’*i’i’i’i’i".l".i":i".i’i’*i’i’i":i’i’i’*i’*i’*i’i".i'i’i’i’*i’*i’i’i’i’i’i’*i’*i’*i’i’i’i’i’i’*i’*i’*i’f

while (TRUE)
{
if (ATDODRO > SET_POINT)
PORTR &= ~0x01;
else
PORTAE |= 0x01;

/* Convert signals on Channels ADOS through ADIS

* Set up for 10-bit, multi-channel, mod

* Do one set of scans

* Save values in variables

*/

#include "hcslz.h"

main ()

{

unsigned int ch[8]; /* Variable to hold result */
ATDICTLZ = 0x80; /* Power up A/D, nc 1nterrupts */

SCAN 0 => one set of conversions

ATDICTL3 = 0x40; /* Do eight conversions */
LATDICTLY = 0x03; /% 10-bit mode, 7 us/conversion */
ATDICTLS = 0x82; /* 1 0010010
Il v/
Il |
(I _ First channel =
[N MULT = 1 => multiple channels
|\
\

|
|
|
|
|
|
\

DSGN = 0 => unsigned
DIM = 1 => right justified

*/

/*i’i’i’i’*i’*i":i’i’i’*i’i".i"!".i’i’*i’i’i":i’*i’*:\i":i’i’i’*i’*':i"!".i":i’*i’*:\i":i’i’i’*i’*i’i’i’i’*i’*i’i’i’i’*i’*i’i’i’i’*i’i’i’i’i’i’*j

while ((ATDISTATO & 0xB80)

ch[0] = ATDI1DRO;
ch[1l] = ATDIDRI1;
ch[2] = ATDIDRZ;
ch[3] = RTDIDR3;
ch[4] = ATDI1DR4;
ch[3] = ATDI1DRS;
ch[6] = ATD1DRE;
ch[7] = ATDIDR7;

== 0) ; /* Wait for seguence to finish */

