
• Preparation for final lab
• Motor Control

Consider a motor which has a maximum speed of 5000 RPM. The speed
vs. duty cycle may look something like this:

The motor doesn’t start rotating until it is driven with a 10% duty cycle, after which it
will increase speed linearly with the increase in duty cycle.

If the motor is initially stopped, and is then turned on (with 100% duty cycle), the speed
vs. time might look something like this:

We will control the motor by adjusting the duty cycle with the HCS12.

We will do this by measuring the speed and updating the duty cycle on a regular basis.
Let’s do the adjustments once every 8 ms. This means that we will adjust the duty cycle,
wait for 8 ms to find the new speed, then adjust the duty cycle again. How much change
in speed will there be in 8 ms? The motor behaves like a single time constant system, so
the equation for the speed as a function of time is:

)()(/
fi

t
f SSeStS −+= − τ

where Si is the speed at time 0, Sf is the speed at time ∞, and τ is the time constant of the
system. With a duty cycle of D, the final speed will be:

0SDS f += α

where So is the speed the motor would turn with a 0% duty cycle if the speed continued
linearly for duty cycles less than 10%, and α is the slope of the speed vs. duty cycle line
(5000/0.9 in this example).

Here I assume that the time constant of the small motors we are using is about 1 second
— i.e., it takes about 5 seconds (5 time constants) for the motor to go from a dead stop to
full speed. If T = 8 ms, the motor will have changed its speed from Si to

]1[)1)((][

)1)(()(

)()(

//

//

/

0

0

−+−+=

+−+=

−+=

−−

−−

−

nSeeSDnS

SeeSDTS

SSeSTS

tT

i
tT

fi
T

f

ττ

ττ

τ

α

α

where S[n] is the speed at the nth cycle.

Consider an integral controller where the duty cycle is adjusted according to:

])[(]1[][nSSknDnD md −+−=

We can simulate the motor response by iterating through these equations.
Start with Sm[1] = 0, D[1] = 0, and Sd = 1500. Then we calculate

])[(]1[][

]1[)1)((][//
0

nSSknDnD

nSeeSDnS

md

m
tT

m

−+−=

−+−+= −− ττα

In MATLAB we can simulate this as:

Sm = 0;
D = 0;
ee = exp(-T/tau);
for n=2:1000

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);

end

By changing the value of k we can see how this parameter affects the response. Here is
the curve for k = 1.0 × 10−7:

With this value of k, it will take about 1 minute for the motor to get to the desired speed.

Here is the curve for k = 1.0 × 10−6:

Now it takes about 10 seconds to get to the desired speed, with a little bit of overshoot.
Let’s try k = 1.0 × 10−5:

This gets to the desired value more quickly, but with a lot of oscillation. Let’s increase k
to 10−4.

For this value of k there is a significant oscillation. However, a real motor will not act
like this. If we look at the duty cycle vs time, we see:

To get this oscillating response, the duty cycle must go to over 100%, and below 0%,
which is clearly impossible. To get the response we expect in the lab, we need to limit the
duty cycle to remain between 20% and 100%. Thus, we change our simulation to be:

Sm = 0;
D = 0;
ee = exp(-T/tau);
for n=2:1000

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);
if (D(n) > 1)

D(n) = 1;
end;
if (D(n) < 0.2)

D(n) = 0.2;
end;

end

When we use this to simulate the motor response, we get:

In your program for Lab 5, you will use a Real Time Interrupt with an 8 ms period. In the
RTI interrupt service routine, you will measure the speed, and set the duty cycle based on
the measured speed. Your ISR will look something like this:

void INTERRUPT rti_isr(void)
{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to

DC = DC + k*(Sd-Sm)
if (DC > 1.0) DC = 1.0;
if (DC < 0.2) DC = 0.2;
Code which writes the PWM Duty Cycle Register to generate duty cycle DC.

Code which clears RTI flag

}

In the main program, you will print the measured speed, desired speed, and duty cycle to
the screen.

Your values of k will probably be different than the values in these notes because speed
vs. duty cycle, time constant, and maximum speed will most likely be different than the
values I used.

Using Floating Point Numbers with the Gnu C Compiler
It will be much easier to do the necessary calculations by using floating
point numbers. Here is an example of a program which uses floating point:

#include "DBug12.h"
main()
{

float x;
x = 10.2;
printf("x = %d\r\n",(short) x);

}

To use floating point numbers with the Gnu C compiler, go to the Options menu, Project
options submenu, and add -fshort-double to the list of compiler options:

