« Preparation for final lab
- Motor Control

Consider a motor which has a maximum speed of 5000 RPM. The speed
vs. duty cycle may look something like this:

EO00

Motor Speed vs. Duty Cycle

4300 .
amal
s=ef
000 .

o]

Spead (RPM]

P E—
1200
L] PP B

Y - A L U PO N S

The motor doesn’t start rotating until it is driven with a 10% duty cycle, after which it
will increase speed linearly with the increase in duty cycle.

If the motor is initially stopped, and is then turned on (with 100% duty cycle), the speed
vs. time might look something like this:

Step Response of Mator

L]
B L i L .
s f
T :
o P : : :
B ST SR <]
& H
=1 H
=% H
w H : H H
1000 B S s .
L]

i i i
[1 2 & B E

t [seﬁnda]

We will control the motor by adjusting the duty cycle with the HCS12.

We will do this by measuring the speed and updating the duty cycle on a regular basis.
Let’s do the adjustments once every 8 ms. This means that we will adjust the duty cycle,
wait for 8 ms to find the new speed, then adjust the duty cycle again. How much change
in speed will there be in 8 ms? The motor behaves like a single time constant system, so
the equation for the speed as a function of time is:

St)=8,+e (S 8))

where Si is the speed at time 0, Sf'is the speed at time oo, and T is the time constant of the
system. With a duty cycle of D, the final speed will be:

S;=aDt S,

where So is the speed the motor would turn with a 0% duty cycle if the speed continued
linearly for duty cycles less than 10%, and o is the slope of the speed vs. duty cycle line
(5000/0.9 in this example).

Here I assume that the time constant of the small motors we are using is about 1 second
—1.e., it takes about 5 seconds (5 time constants) for the motor to go from a dead stop to
full speed. If T = 8 ms, the motor will have changed its speed from Si to

S(T)=S;+e (8- 5))
S(T) - (0D+ So)(l' e-T/r)+ e—t/r Si
S[n]= @D+ S)(1- e Tyt e S[n- 1]

where S[n] is the speed at the nth cycle.

Consider an integral controller where the duty cycle is adjusted according to:

Dln]= D[n- 11+ k(S - S,,[n))

We can simulate the motor response by iterating through these equations.
Start with Sm[1] =0, D[1] =0, and Sd = 1500. Then we calculate

S, [n]= @D+ So)(1-e ")+ e 'S [n-1]
D[n]= Dn- 1]+ k(S, - S,,[n])

In MATLAB we can simulate this as:

Sm = 0;

D=0;

ee = exp(-T/tau);

for n=2:1000
Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);

end

By changing the value of k we can see how this parameter affects the response. Here is
the curve for k=1.0 x 10-7:

Integral Control, k=1 107

Spesd (RPM)

i H i i
a & EQ T &0 20 100
T (seconds)

H H H
o o o 0

With this value of k, it will take about 1 minute for the motor to get to the desired speed.

Here is the curve for k= 1.0 x 10-6:

Integral Control, k=1 1078

160 T T T T T T T T T

FET] S

Spead (RPM)

i i i i
o 2 £ L] &

i i i i
L 12 & 18 g N
T (seconds)

Now it takes about 10 seconds to get to the desired speed, with a little bit of overshoot.
Let’s try k= 1.0 x 10-5:

Integral Control, k=1 107
=0 T T T T T

000

RIS

Spead (RPM)

i g

=L o

4_ H &
T (seconds)

This gets to the desired value more quickly, but with a lot of oscillation. Let’s increase k
to 10—4.

Integral Control, k= 1= 107

a0 T T T T T T

2mab. e

]
2

Spaad (RPM)
E

o A

H i H H
4 5 E 7 g 9 0
T (seconds)

For this value of k there is a significant oscillation. However, a real motor will not act
like this. If we look at the duty cycle vs time, we see:

Integral Control, k= 1= 1074

2
.C?
B
5
[}
o i i i i i i i i i
0 2 3 7 g] {1

i 5 I
T (seconds)

To get this oscillating response, the duty cycle must go to over 100%, and below 0%,
which is clearly impossible. To get the response we expect in the lab, we need to limit the
duty cycle to remain between 20% and 100%. Thus, we change our simulation to be:

Sm =0;

D=0;

ee = exp(-T/tau);

for n=2:1000
Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);
D(n) = k*(Sd - Sm(n)) + D(n-1);
if (D(n) > 1)

D(n) =1,
end;
if (D(n) <0.2)
D(n)=0.2;
end;

end

When we use this to simulate the motor response, we get:

Integral Control, k=1 % 1074 Integral Control, k= 1 x 1074
II.-.
E 1500 B
o Lo : ! : >
o 1000p7- - P P T L:l
@ : ! : : z
@ | 5
o | : : : : o
m 5UU_| :.___..__,. :___..___.: -
| : . . .
0 0
V] 2 4 B 8 10 V] 2 4 6 8 10

T (seconds) T (seconds)

In your program for Lab 5, you will use a Real Time Interrupt with an 8 ms period. In the
RTI interrupt service routine, you will measure the speed, and set the duty cycle based on
the measured speed. Your ISR will look something like this:

void INTERRUPT rti_isr(void)
{

Code to read potentiometer voltage and convert into RPM
Code to measure speed Sm in RPM

Code which sets duty cycle to

DC =DC + k*(Sd-Sm)

if (DC > 1.0) DC = 1.0;

if (DC <0.2) DC =0.2;
Code which writes the PWM Duty Cycle Register to generate duty cycle DC.

Code which clears RTI flag

}

In the main program, you will print the measured speed, desired speed, and duty cycle to
the screen.

Your values of k will probably be different than the values in these notes because speed
vs. duty cycle, time constant, and maximum speed will most likely be different than the
values I used.

Using Floating Point Numbers with the Gnu C Compiler
It will be much easier to do the necessary calculations by using floating
point numbers. Here is an example of a program which uses floating point:

#include "DBugl2.h"

main()
{

float x;

x=10.2;

printf("'x = %d\r\n",(short) x);
}

To use floating point numbers with the Gnu C compiler, go to the Options menu, Project
options submenu, and add -fshort-double to the list of compiler options:

