Review for Exam 3

A/D Converter

» Power-up A/D converter (ATDOCTL2)

* Write 0x05 to ATDOCTLA4 to set at fastest conversion speed and 10-bit conversions

* Write 0x85 to ATDOCTLA4 to set at fastest conversion speed and 8-bit conversions

* Select number of conversions in a sequence (ATDOCTL3)

* Select type of conversion sequence and the analog channels sampled (ATDOCTLY)

— Right/left justified

— signed/unsigned

— Continuous Scan vs. Single Scan

— Multichannel vs. Single Channel conversions

* How to tell when conversion is complete — ATDOSTATO register

* How to read results of A/D conversions — ATDODR[7 — 0]H (8-bit leftjustified conversions)
* How to read results of A/D conversions — ATDODR|[7 — O]L (8-bit rightjustified conversions)
* How to read results of A/D conversions — ATDODR][15 — 6] (10-bit leftjustified conversions)
* How to read results of A/D conversions — ATDODR[9 — 0] (10-bit rightjustified conversions)
— Be able to convert from digital number to voltage, and from voltage to digital number (need to

know VRH and VRL).

* How long does it take to make a conversion?

SPI

 Pins used — SCLK, MOSI, MISO, SS
« Difference of use in Master and Slave mode

* SPIOCR1 Register

— Enable SPI

— Master or Slave

— Enable interrupts

— Clock polarity

— Clock phase

— Automatically operate SS for single-byte transfers
— LSB or MSB first

* SPIOCR2 Register
— Get into bidirectional mode
— Enable or disable the output buffer on the data pin in bidirectional mode

* SPIOBR Register — Set speed (master only)

* SPIOSR Register — SPIF and SPTEF flag - clear SPIF flag by reading
SPIOSR, the read SPIODR; clear the SPTEF flag by reading SPIOSR, then write the SPIODR.

* SPIODR Register — shift register — master starts transfer by writing data to SPIODR

Interfacing
* Getting into expanded mode — MODA, MODB, MDOC pins or MODE Registers
* PEAR Register — enable ECLK, LSTRB, R/W on external pins

* Ports A and B in expanded mode
— Port A — A/D 15-8 (Port A is for data for high byte, even addresses)
—Port B— A/D 7-0 (Port B is for data for low byte, odd addresses)

* E clock

— Address on A/D 15-0 when E low, Data on A/D 15-0 when E high

— Need to latch address on rising edge of E clock

— On write (output), external device latches data on signal initiated by falling edge of E
— On read (input), HCS12 latches data on falling edge of E

— E-clock stretch - MISC register

* R/W Line
* LSTRB line

* Single-byte and two-byte accesses
— 16-bit access of even address — AQ low, LSTRB low — accesses even and odd bytes

— 8-bit access of even address — A0 low, LSTRB high — accesses even byte only
— 8-bit access of odd address — A0 high, LSTRB low — accesses odd byte only
— A0 high and LSTRB high never occurs on external bus.

* Address Decoding — interfacing using MSI chips

- What's on the 9S12 bus as it executes a program

« The 9512 Serial Communications Interface

« 9512 Serial Communications Interface (SCI) Block Guide V02.05
« Huang, Sections 9.2-9.6

Consider a 9512 executing the following program loop:

org $480
0480 FE4000 11: 1dx $4000 % 3 cycles
0483 724001 inc $4001 % 4 cycles
0486 B64000 ldaa $4000 % 3 cycles
0489 20F5 bra $11 % 3 cycles

If you assemble this program, you get the following:

0 1 2 3 4 5 6 7 8 9 A B C D E

0480 | FE | 40 | 00 | 72 | 40 | 01 | B6 | 40 | 00 [20 | F5 [3B | FC | 10 | 18

F3

Here is what is on the bus during these 13 cycles:

E ina 1D 2a ZD 3a ip 4 A 4D 5 A 5D 6 A 6 B 7ThA 70D
AD15-0 0480 FE40 | 0482 0072 | 0484 4001 | 4000 AATY | D488 BE40 | o488 ZZZL | 4001 ZZ79

R/W

LSTRB

E EIFY gD 9 a gD 10 A 10D 11a 11D 12 a 12 D 13 a 13 b 1a 1D
AD15-0 0488 0020 | 4001 ZZTA | D48A F638 | 4000 ARZI | 048C FC10 | 048c ZZE% | 0480 FE40
R/W

LSTRE

Here is what happens cycle by cycle:

1. 9S12 does a 16 bit read from address $0480. The memory returns $FE40, the first two bytes of

the 1dx $4000 instruction.

2. 9512 does a 16-bit read from address $0482. The memory returns $0072, the third byte of the

the 1dx $4000 instruction and the first byte of the inc $4001 instruction.

3. 9S12 does a 16-bit read from address $0484. The memory returns $4001, the second and third

byte of the inc $4001 instruction.

4. 9512 does a 16 bit read from address $4000 (it is executing the 1dx $4000 instruction); the
memory returns $AA79.

5.9S12 does a 16-bit read from address $0486. The memory returns $B640, the first two bytes of
the 1daa $4000 instruction.

6. 9S12 does nothing on bus (it puts the last address it used on the bus, during the address cycle,
and nothing on the bus during the data cycle). It is completing the 1dx $4000 instruction.

7.9S12 does an 8 bit read from address $4001 (it is executing the inc $4001 instruction, and has
to read the byte at address $4001); the memory returns $AA79.

8. 9S12 does a 16-bit read from address $0488. The memory returns $0020, the third byte of the
the ldaa $4000 instruction and the first byte of the bra 11 instruction.

9. 9S12 does an 8 bit write to address $4001 (it is executing the inc $4001 instruction, and has to
write the incremented byte to address $4001); it puts a $7A on the low byte and nothing of the
high byte.

10. 9S12 does a 16-bit read from address $048A. The memory returns $F53B, the second byte of
the the bra 11 instruction and the next byte in memory.

11.9S12 does an 8 bit read from address $4000 (it is executing the ldaa $4000 instruction); the
external device put a $AA on the high byte and nothing of the low byte.

12. 9S12 does a 16-bit read from address $048C. The memory returns $FC10, next two bytes in
memory. The 9512 has not yet figured out that it has to branch, so it is reading the next to bytes

to fill its instruction pipeline.

13. 9S12 does nothing on bus (it puts the last address it used on the bus, during the address cycle,
and nothing on the bus during the data cycle). It is figuring out where it needs to branch to.

1. The loop executes again.

Asynchronous Data Transfer
* In asynchronous data transfer, there is no clock line between the two devices
* Both devices use internal clocks with the same frequency

* Both devices agree on how many data bits are in one data transfer (usually 8, sometimes
9)

* A device sends data over an TxD line, and receives data over an RxD line

— The transmitting device transmits a special bit (the start bit) to indicate the start of a
transfer

— The transmitting device sends the requisite number of data bits

— The transmitting device ends the data transfer with a special bit (the stop bit)

* The start bit and the stop bit are used to synchronize the data transfer

Asynchronous Serial Communications

TxD RxD

RxD TxD

|||——
|||——

R]

= m e

ldla Idl2

e e A e e T

One byte requires 10 bit times

mDé
11010110

Asynchronous Data Transfer

* The receiver knows when new data is coming by looking for the start bit (digital 0 on
the RxD line).

« After receiving the start bit, the receiver looks for 8 data bits, followed by a stop bit
(digital high on the RxD line).

« If the receiver does not see a stop bit at the correct time, it sets the Framing Error bit in
the status register.

» Transmitter and receiver use the same internal clock rate, called the Baud Rate.

* At 9600 baud (the speed used by D-Bug12), it takes 1/9600 second for one bit, 10/9600
second, or 1.04 ms, for one byte.

Parity in Asynchronous Serial Transfers
» The HCS12 can use a parity bit for error detection.
— When enabled in SCIOCR1, the parity function uses the most significant bit for parity.
— There are two types of parity — even parity and odd parity

_ With even parity, and even number of ones in the data clears the parity bit; an
odd number of ones sets the parity bit. The data transmitted will always have an

even number of ones.

_ With odd parity, and odd number of ones in the data clears the parity bit; an
even number of ones sets the parity bit. The data transmitted will always have an
odd number of ones.

— The HCS12 can transmit either 8 bits or 9 bits on a single transfer, depending on the
state of M bit of SCIOCRI.

— With 8 data bits and parity disabled, all eight bits of the byte will be sent.

— With 8 data bits and parity enabled, the seven least significant bits of the byte are sent;
the MSB is replaced with a parity bit.

— With 9 data bits and parity disabled, all eight bits of the byte will be sent, and an
additional bit can be sent in the sixth bit of SCIODRH.

* It usually does not make sense to use 9 bit mode without parity.

— With 9 data bits and parity enabled, all eight bits of the byte are sent; the MSB is
replaced with a parity bit.

Asynchronous Data Transfer

» The HCS12 has two asynchronous serial interfaces, called the SCI0 and SCI1 (SCI
stands for Serial Communications Interface)

* SCIO is used by D-Bug12 to communicate with the host PC

* When using D-Bug12 you normally cannot independently operate SCIO (or you will
lose your communications link with the host PC)

* The D-Bugl?2 printf() function sends data to the host PC over SCI0
» The SCIO TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of Port S.
* The SCIO RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of Port S.

* In asynchronous data transfer, serial data is transmitted by shifting out of a transmit
shift register into a receive shift register

1 R 1 R !
i ‘ =D shift Rag |1_=-sl; 'PSO | BxD shift Rag | :
i ! ! !
1 1 1 I
i i |

1 1 I |
' i I i
i ‘ SCTODR. (Read) . i s:::[ommrita}| !
i ! ! !
I - R | TxD :

! ‘ R shift Reg I — :ps1| TxD shift Feg | !

SCIODR receive and transmit registers are separate registers distributed into two
8-bit registers, SCIODRH and SCIODRL

An overrun error is generated if RxD shift register filled before SCIODR read

Timing in Asynchronous Data Transfers
» The BAUD rate is the number of bits per second.
* Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and 115,000
» At 9600 baud the transfer rate is 9600 bits per second, or one bit in 104 ps.
* When not transmitting the TxD line is held high.

» When starting a transfer the trasmitting device sends a start bit by bringing TxD low for
one bit period (104 ps at 9600 baud).

* The receiver knows the transmission is starting when it sees RxD go low.
* After the start bit, the transmitter sends the requisite number of data bits.

» The receiver checks the data three times for each bit. If the data within a bit is different,
there is an error. This is called a noise error.

* The transmitter ends the transmission with a stop bit, which is a high level on TxD for
one bit period.

* The receiver checks to make sure that a stop bit is received at the proper time.

* [f the receiver sees a start bit, but fails to see a stop bit, there is an error. Most likely the
two clocks are running at different frequencies (generally because they are using different
baud rates). This is called a framing error.

* The transmitter clock and receiver clock will not have exactly the same frequency.

* The transmission will work as long as the frequencies differ by less 4.5% (4% for 9-bit
data).

RT1

Timing in Asynchronous Data Transfers

Baud Clock = 16 x Baud Rate

Start Bit
I A 1 A
- Mmoo W W oo 2 o = = o
EEBEBEEEEREREREEEGE B

FT1
ET1l

B

=

TR EEEEREEE

Seart Bit - Three 1's followed by 0's & RTL, 3,5,7
(Two of RT3, 5,7 mast be =aro —

Data Bit - Check at FT8,9,10
{Majority decides value)
(If not all sawe, noiss flag sst)

If not all =oro, Nodse Flag set)

If mo stop bit detected, Framing Error Flag sst
Bawd clocks can differ by 4.5% (4% for 9 data bits)
with ro errors.

Even parity —— the madber of ones in deta word is even
Odd pari == the mmiser of oes in data word is odd

When using parity, transmt 7 data + 1 parity, or 8 data + 1 parity

Stop Bit — Check at RTS8, 9, 10
(Majority decides value)

(If not all same, noise flag set)

* The SCI transmitter and receiver operate independently, although they use the same

baud rate generator.

Baud Rate Generation

* A 13-bit modulus counter generates the baud rate for both the receiver and the

transmitter.

* The baud rate clock is divided by 16 for use by the transmitter.

* The baud rate is

SCIBaudRate =(Bus Clock)/(16 x SCI1BR[12:0])

PFadoaiver

0 to 8192

~ 16

|—— Transmitter

» With a 24 MHz bus clock, the following values give typically used baud rates.

Bits Receiver Transmitter Target Error
SPR[12:0] Clock (Hz) Clock (Hz) Baud Rate (%)
39 615,384.6 38,461.5 38,400 0.16
78 307,692.3 19,230.7 19,200 0.16
156 153,846.1 9,615.3 9,600 0.16
312 76,693.0 4,793.3 4,800 0.16
SCI Registers

* Each SCI uses 8 registers of the HCS12. In the following we will refer to SCII.

* Two registers are used to set the baud rate (SCIIBDH and SCI1BDL)

* SCI1CRI is used for special functions, such as setting the number of data bits to 9.

* Control register SCI1CR2 is used for normal SCI operation.

» Status register SCI1SR1 is used for normal operation.

» SCI1SR2 is used for special functions, such as single-wire mode.

* The transmitter and receiver can be separately enabled in SCI1CR2.

* SCI1SR1 is used to tell when a transmission is complete, and if any error was
generated.

» Data to be transmitted is sent to SCI1DRL.

* After data is received it can be read in SCI1DRL. (If using 9-bit data mode, the ninth bit
is the MSB of SCIODRH.)

SCI Baud Rate Generation

Medule Base + 0x_0000

5 £ 3
R] i} o
SBR12 SBR11 SBR1D SBR2 SBR2
W
Reset a o 8] 0 0] o [u]
Module Base + Ow_0001
E £ 3
q
SBRT SBRS SBRE SBERs SBR3 SBR2 SBR1 SBRO
W
Reset a o 8] 0 0 1 o [u]

|:|= Unimplemented or Reserved

Figure 1-3. SCI Baud Rate Registers (SCIBDH and SCIBDL)

The baud rate for the SCI is determined by these 13 bits
SBR12-SBR&: SCI baud rate control register high
SBR7 - SBRO: SCI baud rate control register low

SCI Baud Rate = SCI module clock / (16 XBR)

SCI Operation
Medule Base + 0x_0002
E 5 4 3
LOOPS | sciswel RERC M WAKE ILT PE FT
Resst 0 o [l 0 0 0 o o

Figure 1-4. SCI Control Register 1 (SCICR1)
Bead: Anytime

Wiite: Anvtime

LOOPS: loop select bit. In loop operation, the RxD pin is disconnected from the SCI and
the transmitter output is internally connected to the receiver input

0 = normal operation enabled

1 = loop operation enabled

SCISWALI: Enalbes/disables the wait mode
0 = SCI enabled in wait mode
1 = SCI disabled in wait mode

RSRC: Receiver source bit. When LOOPS =1 RSRC determines the source of the
receiver shift register

0 = Receiver input connected internally to transmitter output

1 = Receiver input connected externally to the transmitter

M: Data format mode bit. Determines whether data characters are 8 or 9 bits.
0 = 1 start bit, eight data bits, one stop bit
1 = 1 start bit, nine data bits, one stop bit

PE: Parity enable bit. Enables the parity function. When enabled, the parity function
inserts a parity bit in the MSB

0 = Parity function disabled

1 = Parity function enabled

PT: Parity type bit. Determines whether the SCI generated and checks for even parity or
odd parity. With even parity, an even number of 1s clears the parity bit and an odd
number of s sets the parity bit. With odd parity, an odd number of 1s clears the parity
bit and an even number of 1s sets the parity bit

0 = Even parity

1 = Odd parity

Module Base + 0x_0003

TIE

TCIE RIE ILIE TE RE RwU SBK

Resst] o o o 0 o 0 o
Figure 1-5. SCI Control Register 2 {SCICR2)

Read: Amytime

Write: Anvtime

TIE: Transmitter interrupt enable bit. Enables the transmit data register empty flag,
TDRE, to generate interrupt requests
0 = TDRE interrupt requests disabled
1 = TDRE interrupt requests enabled

TCIE: Transmission complete interrupt enable bit. TCIE enables the transmission
complete flag, TC, to generate interrupt requests

0 = TC interrupt requests disabled

1 = TC interrupt requests enabled

RIE: Receiver full interrupt enable bit. Enables the receive data register full flag, RDRF,
or the overrun flag, OR, to generate interrupts requests

0 = RDRF and OR interrupt requests disabled

1 = RDRF and OR interrupt requests enabled

ILIE: Idle line interrupt enable bit. Enables the idle line flag, IDLE, to generate interrupt
requests

0 = IDLE interrupt requests disabled

1 = IDLE interrupt requests enabled

TE: Transmitter enable bit. Enables the SCI transmitter and configures the TxD pin as
being controlled by the SCI

0 = Transmitter disabled

1 = Transmitter enabled

RE: Receiver enable bit. RE enables the SCI receiver
0 = Receiver disabled

1 = Receiver enabled

Module Base + Ox_0004

R TORE TC RDRF IDLE OR MNF FE PF
W]
Reset o [u] o 0 0 o [u] o

|:|= Unimplemented or Reserved

Figure 1-6. SCI Status Register 1 (SCISR1)

Read: Anytime

Write: Has no meaning or effect

TDRE: Transmit data register empty flag.
0 = No byte was transferred to transmit shift register
1 = Byte transferred to transmit shift register; transmit data register empty

TC: Transmit complete flag.
0 = Transmission in progress
1 = No transmission in progress

RDREF: Receive data register full flag.
0 = Data not available in SCI data register
1 = Received data available in SCI data register

IDLE: Idle line flag. Is set when 10 consecutive logic 1s (if M=0) or 11 consecutive
logic 1s (if M=1) appear on the receiver input.

0 = Receiver input is either active now

1 = Receiver input has become idle

OR: Overrun flag. Is set when the software fails to read the SCI data register before the
receive shift register receives the next frame.

0 = No overrun

1 = Overrun

NF: Noise flag. Is set when the SCI detects noise on the receiver input. NF bit is set
during the same cycle as the RDRF flag but does not get set in the case of an overrun
0 = No noise

1 = Noise

FE: Framing error flag.
0 = No framing error
1 = Framing error

PF: Parity error flag. Is set when the parity enable bit is set and the parity of the received
data does not match the parity type bit

0 = No parity error

1 = Parity error

Module Base + 0x_0006

B 2 < 3
R R3 . i} o] o o o
=}
W
Resst 0 [} [u} o] o 4] [}
Module Base + Ox_D007
B 5 £ 3
R R7 RE RS R4 R3 R2 R1 RO
W LK TG TS T4 T3 T2 Ti TO
Resst i} o i} o] o o o

|:|= Unimplermented or Reserved

Figure 1-8. SCI Data Registers (SCIDRH and SCIDRL)
Read: Anytime; reading accesses SCI receive data register

Wiite: Anytime; writing accesses SCT transmit data register; writing to RE has no effect

R8: Received Bit 8. RS is the ninth data bit received when the SCI is configured for 9-bit
data format (M=1)
T8: Transmit Bit 8. T8 is the ninth data when M=1

R[7:0],T[7:0]: Received Bits/Transmit Bits. Received and transmit Bits 7-0 for 9-bit or
8-bit formats.

Data Format

The SCI uses the standard NRZ mark/space data format shown below:

&-BIT DATA FORMAT PARITY
OH DATA
BIT MIN SCICR1 CLEAR BIT NEXT

START START
“\Bm Lamo et Yerz) emaYers)ems) ere a7y sgﬁp\ BIT '8

9-BIT DATA FORMAT PARITY
BIT M IN SCICR1 SET ORB[I]#TA NEXT

_\STB’TTHT,{ BITO X BIT1 X BIT2 X BIT3 X BIT4 X BIT5 X BITG § BIT7 X Bne}lsgﬁp \STB’TTHTE

Figure 1-10. SCI Data Formats

Each data character is contained in a frame that includes a start bit, eight or nine data bits,
and a stop bit. Clearing the M bit in SCI control register 1 configures the SCI for 8-bit
data characters. A frame with eight data bits has a total of 10 bits, and a frame with nine
data bits has a total of 11 bits.

Examples of 8-data bit formats:

Start Bit Data Bits Parity Bit Stop Bit
1 8 0 1
1 7 1 1
Examples of 9-data bit formats:
Start Bit Data Bits Parity Bit Stop Bit
1 9 0 1
1 8 1 1

Example program using the SCI Transmitter

#include "hcsl2. h"

/* Program to transmit data over SCI port */

main ()

{

/1":\{'1":\{"Ji'*1&""1&'*1&'*1&':\(’1&'*1&'1":\{"Ji".\('1‘"1'1"'.i'1":\{'1&':\(’1&'*1&'*1&'*1&'*1&'1"'.i'************************

* SCI Setup

************************1"3"1"3"1""’1"*1""’1""’1"*')l"'.\"'.\"'.\"***********************/

BAUD rate toc 9,600 */

SCI1BDL 156;
SCI1BDH 0;
SCIICR1 = 0x00; /* O

—_——— - =

/* Set

o
|
|
|
|
\

o
|
|
|
\

a
|
|
\

00
R
\

|
|
|
|
|
|
|
\

*/

SCIICR2 = 0x08; /* 0

—_—_————

—_——— =

— e

|
|
|
|
|
|
|
\

*/

/1":\{'***********************

* End of S5CI Setup

A A A A A A A A A A AR AT A A ARSI E S A A

SCI1IDEL = 'h';
while ((SCI1SR1l & 0x80)
SCI1DEL = 'e';
while ((SCI1sSR1 & 0xB80)
SCIIDRL = "1';
while ((SCI1sSR1 & 0xB80)
SCIIDRL = "1';
while ((SCI1sSR1 & 0xB80)
SCIIDREL = "o';

while ((SCI1SR1 & 0z80)

“,"i-

Even Parity

Parity Disabled

Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits

Not used (lcopback disabled)

SCI1 enabled in wait mode

Normal (not loopback) mode

No Break

Net in wakeup mode (always awake)
Receiver disabled

Transmitter enabled

No IDLE Interrupt

No Receiver Interrupt

No Transmit Complete Interrupt
No Transmit Ready Interrupt

Wd W W R W N W N W W W W W W W Wk ok W ok R R W W W R R ok o R

ai--:ﬂ—a-i—-:ﬁ-a-i—-:ﬁ-a-i—-:ﬁ-a-i—-:ﬁ-a-i—-:ﬁ-a-i—-:i—-:ii—aﬂ-***********************/

Send first byte */
0y ; /* Wait for
Send next byte */

0y ; /* Wait for
Send next byte */

0y ; /* Wait for
Send next byte */

0y ; /* Wait for
Send next byte */

0y ; /* Wait for

TDRE

TDRE

TDRE

TDRE

TDRE

flag
flag
flag
flag

flag

*/

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "hesl2.h"
#include "vectorslZ.h"
#include "DBuglZ.h"

#define enable() asm(" cl

i”)

void INTERRUPT scil isr(veid);
volatile unsigned char data[80];

volatile int i;

main ()

{

,,"':i"!".i"!".i’i’*i’i’i":i’*i’*:\i":i’i’i’*i’*':i"!".i":i’*i’*i":i’i’i’*i’*i’i’i’i’*i’*i’i’i’i’*i’*i’i’i’i’*i’i’i’i’i’i’*i’i’i’

* SCI Setup

':E'1&'1’1&'1’1&'1&'1&'1&'1’7&'1&'*1&'1&'1&'1&'7&'1&'*1&'1&'1&'1&'1&'1&'1&'1&'1&'1&"!'1&"!":E'1&'1&'1&'1’1&'1’1&'1&'1&'7&'**************i’******/

BAUD rate to 9,600 */

SCI1BDL = 156; /* Set

SCI1BDH = 0;

SCII1CR1 = 0x00; /* 0 0 0 0 0 0 O
1 T I I I
1 T I I I
1 T I I I I
[T O I I
[T I I
I
| 1\
|\
\

*/

SCIICR2 = 0x24; /* 001 0010
1 T I I I
1 T I I I
1 T I I I I
[T O I I
[I I T
I
| 1\
|\
\

*/

Even Parity

Parity Disabled

Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits

Not used (loopback disabled)

SCI1 enakled in walit mode

Normal (not loopback) mode

No Break

Not in wakeup mode (always awake)
Receliver enabled

Transmitter disabled

No IDLE Interrupt

Receiver Interrupts used

No Transmit Complete Interrupt
No Transmit Ready Interrupt

UsersCIl = (unsigned short) &scil isr;

i= 0;

enable () ;
“,"':i’i’*i’i".i".\i’i’*i’i".i’i’i’*i".\i".i".i"!".i".i’i’*i’i’*'.i’i’*i’i’*'.i’i’*i’i’i".i’i’*i’i’i’i’i’**i’f*i’f*i’f*i’f*i’f*
* End of SCI Setup
i’i’f*i’i’*i’i’*i'f*i'i'*:i'i’*:i’f*i’i’*i’i’*i’i’**i’*i’i’*:ﬁ'i’*i’************i’f*i’f*i’**i’f*/
while (1)

{

/* Wait for data teo be received in ISR, then

* do something with it

=/

}

void INTERRUPT scil isr(wvoid)

{

char tmp;

/* Note: To clear receiver interrupt, need to read
* SCIISR1, then read SCIIDRL.

* The following code does that */

while ((SCI1SR1 & 0x20) == 0); /* Wait for data available */
data[i] = SCI1DRL;
i=i+1;

return;

