* More on addressing modes.
« 9S12 cycles and execution time.
- AS12 Assembler Directives
- Huang, Sections 1.6 through 1.10
o Using X and Y registers as pointers
o How to tell which branch instruction to use
o How to hand assemble a program
o Number of cycles and time taken to execute an 9S12 program

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective Address:
Memory address used by instruction

ADDRESSING MODE:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative (used only with branch instructions)
IDX Indexed (won’t study indirect indexed mode)

Using X and Y as Pointers
* Registers X and Y are often used to point to data.
* To initialize pointer use
ldx #table
not
ldx table

* For example, the following loads the address of table ($2000) into X; i.e., X will point
to table:
Idx #table ; Address of table [] X

The following puts the first two bytes of table ($0C7A) into X. X will not point to table:
Idx table ; First two bytes of table [] X

* To step through table, need to increment pointer after use

Idaa 0,x

inx
or
ldaa 1,x+

table

0C
TA
D5
00
61
62
63
64

org $2000
table: dc.b 12,122,-43,0
dc.b ‘a’,’b’,’c’,’d’

Which branch instruction should you use?
Branch if A > B
Is OxFF > 0x00?

If unsigned, OxFF = 255 and 0x00 = 0,
so OxFF > 0x00

If signed, OxFF = —1 and 0x00 =0,
so OxFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR)
Branch if Higher (if C + Z = 0) (unsigned)

Using signed numbers: BGT (checks V bit of CCR)
Branch if Greater Than (if Z + (N LJ V) = 0) (signed)

For unsigned numbers, use branch instructions which check C bit
For signed numbers, use branch instructions which check V bit

Hand Assembling a Program
To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go
into memory.
(e.g., org $2000 will put the first instruction at address $2000.)

2. Look at the first instruction. Determine the addressing mode used.
(e.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the HCS12 Core Users Guide, find the appropriate
Addressing Mode, and the Object Code for that addressing mode.
(e.g., ldab IMM has object code C6 ii.)

Table 5.1 of the Core Users Guide has a concise summary of the instructions,
addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be
careful to convert decimal operands to hex operands if necessary.
(e.g., 1dab #10 becomes C6 0A.)

5. Add the number of bytes of this instruction to the address of the instruction to
determine

the address of the next instruction.

(e.g., $2000 + 2 = $2002 will be the starting address of the next instruction.)

org $2000

Idab #10
loop: clra

dbne b,loop

swi

Address

Machine

Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

LBCS ei?d Long branch if C set; if C=1,then REL 1325ggrr CEEF (oranch) F=EEEEEE
(PC+4+rel=PC; same as LELO OF2 (no branch)

LBEQ rel18 Long branch if equal; ifZ=1,then REL 1327qQgrr COFFEF (branch) EEEEEEEE
(PCi+4+rel=PC OFD (no branch)

LBGE rel18 Long branchif =0, signed; FNEY=0, REL 132CQgrr COFFEF (branch) EEEEEEEE!
then [PCl+4+rel=PC CEC (no branch)

LBGT rai1d Long branchif = 0, signed; if REL 13 3Eggrr CEEE (oranch) EEEEEEEE]
Z | (N3 =0.then (PCHd+rel=PC CFC (no branch)

LBHI e/ Long branch if higher, unsigned; if REL 1l322qqgrr OFFE (oranch) |_|_|_|_|_|_|_|_|
C | Z=0.then (PC)+4+rel=PC CFC (no branch)

LBHS rei18 Lang branch if higher or same, REL l324ggrr CEFEFF (oranchj EEEEEEEE
unsigned; ifC=0 then CED (no branch)
(PC#4+rel=PC;sameas LBCC

LBLE rai?@ Long branch if £ 0, sigmed; if REL 19 2F Qg EY CEEE (oranch) EEEEEEEE!
Z | (N&V =1, then (PClHd+4ral=PC CED (no branch)

LBLO rel1@ Laongbranchiflower, unsigned; if C=1, (REL l32s5ggrr CEFEFF (oranchj EEEEEEEE
then (PC+4+rel=FC; same as CED (no branch)
LBCS

LBLS rsi?@ Laong branchiflowergrsams, unsigned; (REL l323ggrr CEFEFF (oranchj EEEEEEEE
ifC | Z=1 then (FC+4+rel=PC CED (no branch)

LBLT refig Laong branch if <0, signed; FMEV=1, (REL l32Dggrr CEFEFF (oranchj EEEEEEEE
then (PC)+d+rel=FC CED (no branch)

LBMI relt15 Long branch if minus; i M=1,then RE 18 2Egg rr CEEF (oranch) EEEEEEEE]
(PCir+4+rel=PC CEC (no branch)

LBME ref18 Long branch if not equal to 0; if2=0, |REL 19 26 Q@ £ CEFEFF (oranchj EEEEEEEE
then (PC)+4+rel=PC CEC (no branch)

LBPL rei?@ Long branch if plus;if N=0,then REL 18 2Aggrr CEEF (oranch) EEEEEEEE]
(PCl+4+rel=PC OF2 (no branch)

LBRA rei18 Laong branch always REL 1820ggrr [w)==yd EEEEEEEE

LBRM rel18 Long branch mewar REL 1921 qgrr [wi 2w EEEEEEEE]

LBVC rei1d Laong branch if V clear; if V=0,then REL 1929 g rr CEEE (oranch) EEEEEEEE|
(PCir+4+rel=PC CEC (no branch)

LBVS rel1@ Laong branch if V =2t f W=1,then REL l32sggrr CEFEFF (oranchj EEEEEEEE
(PCred+rel=PC CEC (no branch)

LOAA #aprSl Load A; (M}=A or imm=:A IR 4614 E EEEEEENE|

LDAA opréa DIR 26 dd rpf

LDAA opriGa EXT EEhh1l TP

LDAK oprxd_xyspoc DX nE xb ref

LDAK oprxcd, xysppo D1 nE xb £ TED

LDAK oprx 18, xysppe IDX2 nE xbee £ frep

LDAA [O, xy=sppc] [DUDX] |6 xb frfref

LDAA [oprx 16.xysppd] [IDX2] A6 xbee £f fIeref

LDAB #apr8i Load B; (M)}=B or imm=B InIBA CE 11 E EEEREEELE

LDAB opréa DIR o6 dd ref

LDAB opr1Ga EXT FEhh1l TED

LOAB epral_xyspoc DX ES xb rEBf

LOAB oprcd, xysopc D1 ES xb ££ TEO

LOAB oprc 18 xyspoc D2 E6 xbee £f EreR

LDAE [D.xysppc] [DIDX] |E6 xb friref

LDAB [oprx 16, xysppc] D3] Ef xbee £ freref

Address

Maching

Source Form Operation Mode Coding {Hex) Access Detail SXHINZVC

BPL reld Branch if plus; if M=0, than REL 2ATE EEE (branch) EEEEEEEE
(PC+24rel=PC E (no branch)

BRA reld Branch always REL 20rr EEF EEEEEEEE]

BRCLR oprfa, msk&, ral2 Branch if bit(s) clzar; if DR 4rddmmrr TEEE |_|_| _| _| _| _| _| _I

BRCLR opri16a, msks, reif (M)e{mask oyie)=0. then EXT 1Fhh1lmmrr TfEFF

BRCLR oprx0_xysppc, msk, reld (PC+2+4rel=PC DX OF xbmm rx IEEF

BRCLR oprxD. xysppe. msks, reld 1DX1 oFxbffmmrr hgid=o=]

BRCLR oprx18,xysppec, mské, rel D2 0Fxbee ££ mm rr |FriFER

BRNM reig Branch never REL 2lrr F EEEEEEEE]

BRSET opr8, mskE, rel8 Branch if bitjs) s=t; if DIR 4Eddmm rr IFFF EEEEEEEE!

BRSET oprida, msk&, reld (M 1e{mask byie)=0. then EXT 1Ehh11lmmrr rfePE

BRSET oprxl_xysppe, msks, reif (PC+24rel=PC 10X 0B xbmm rr TEFF

BRSET oprxf.xysppe, msks, reld 101 oExbffmmrr rfEFE

BRSET oprx 18 xyspoc, msks, reld 1DX2 tExbee ££f mmrr |EriEEE

BEET opr, msks Setbit(s)in M; (M) | {mask bytel==M |[DIR 4cddmm TEWD EEEEERRE

BSET oprifa, msks EXT 1chh11mm TEWE

BEET oprxl_xysppe, msk3 DX oc xbmm TEWD

BSET oprxd, xysppc. msks 1DX1 ocxb ££mm TEWE

BEET oprx16.xysppe, mskd IDx2 oCxbee ££mm frEwED

BER reld Branch to subrouting; (EP}-2=5F; REL a7 rE SEEE EEEEEEEE]

RTNGRTN =MzpMgg,:
(PG 2+rel=PC

BWC reld Branch if \/ clear; if V=0, then REL 29 rr EPE (branch) EEEEEEEE!
(PC+2+rel=PC E (no branch)

BWS reig Branch if V set: if V=1, then REL 2% rr EFE (branch) EEEEEEEE]
(PC+24rel=PC E (no branch)

CALL oprifis, page Call subrouting in expanded memory; |EXT 4ahhllpg OnSSEEF EEEEEEEE]

CALL oprxll_xysppc. page 5P-2=5F; 1D 4Exbpg gnSsEER

CALL oprxd xysppe, page RTHy-RTH =Mzp:Mzany1; 1031 dexbffpg OgnSsEER

CALL oprx 16, xysppe, page (SP)}-1=5P: (PPG)=Mgg: D2 dExbeeffpa fgnssEEE

CALL [D.xysepc] Pa=FPAGE register; [DIDX] |4ExD fIignSsEER

CALL [oprx18, xysppc] subroutine address=FC [IDx2] 1exbes £f frignsserp

CBA Compare Ato B; [(AH(B) INH 1917 [alwl EEEEEEERE|

CLC Clear C; assembles as ANDCC #3FE IR 10 FE =] EEEEEEEE|

cLl Clearl; assembles as ANDCCE3EF [IMM 10 EF E EEELEEEE|

CLR oprifia Claar M; 500=M EXT 75hh11 Ewl EEEEE]

CLR oprd_xysppe 1D 63 xb Ew

CLR oprx8.xysppc D1 6axbff Ewi

CLR cprx 18 xysppc IDx2 6¥xbes £f EWE

CLR [D.xyspod] [DIDX] [e==xb EIfw

CLR [oprx18,xysppe] [IDx2] 6¥xbee ff ELEW

CLRA Claar A& 300=A INH a7 o

CLRB Clear B; $00=8 INH o7 =]

CLV ClearV; assembles as ANDCC #5FD IMIBA 10 FD E EEEEEENE|

CMPA Zoprfi Compare A&; (A}-(M) or {A}-Hmm IR 9111 B EEEEEEEE]

CMPA cpria DIR 51dd ref

CMFA oprifa EXT El1hh11 IED

CMPA oprd]_xysppc 1D Alxb rrf

CMPA oprd, xyspoc 1DX1 Alxbff TED

CMPA oprx 16, xysppc D2 Alxbee ff IrFF

CMPA D, xyspoc] [CUDX] |Alzxb frfrpf

CMPA [oprx 16, xysppc] [IDx2] Alxbee ff fIerEi

Core Usar Guide — S12CPUMEUG V1.2

D BNE Decrement and Branch if Not Equal to Zero DB N E

Operation

CCR
Effects

Code and
CPU
Cycles

{counter} — | = counter
If {counteri not = 0, then (PC) + 30003 + el = PC

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative
destination if the counter register does not each zero. Rel is a 9-bit two's complement
affszt for branching forward or backward in memory. Branching range is 100 to $0FF
{—256 to +255) from the address following the Last byte of object code in the instruction.

5 X H I N Z Vv
Address Maching
Sourca Form Mods Coda [Hex) CPU Cycles
- REL 04 lbrr TTr (branch)
DBNE aDoNysp, reis v ot e

Loop Primitive Poetoyte (1b) Coding
1 onject Countar
Postbyte Cooe Ragiater Orraat

0010 X000 04 z0Ex A
0010 X001 04 z1er B
0010 X100 0424 e o .
0012 A0 aa 25 rr X Foste
£o10 X110 ¥
coln X1 =

DSME A, rala 011 X000 A

[ENEE, refd D011 X001 B

DSMED, raia o1 X100 D .

= Co11 X101 : X Negatve

0011 X110 0426 rr ¥

DSME SR e 0o X111 5a37er ES

MNOTES:
1. Bis 7:8:5 select DBEQ or DSNE; bit £ ks e offse? sign bit: bit 3 s not vsed; bits 2:1:0 select
the counter register.

Address

Machine

Source Form Operation Mode Cading {Hex) Access Detail SXHINZVC
SUBB #opréi Subtract from B; (B8—(M)=B or InIBA coil B |_|_|_|_|j|ﬂ|ﬂ|ﬂ|
SUBB opria (B~imm=8E DIR Do dd rrf
SUBB oprifia EXT Fohhll TED
SUBE oprxd_xysppc 04 Edxb rrf
SUBB oprxB.xysppc DX 1 B0 xb£E TED
SUBB oprx 18 xysppc IDX2 Ed xbee £ ErEE
SUBB [D xysppd] [DIDX] (B0 xb fIfref
SUBB [oprx 18, xysppc] [ox2] Ex xbee £f freref
SUBD#oprT8i Subtract from D IR 231jkk EC EEEEPERE
SUBD aprfa (ABM:M+ 1) =A8 or IR 53 dd ref
SUBD aprida (A:BHmm=AB EXT E3hh1l REC
SUBD apm)_xysppc 04 A3zxb REE
SUBD aprd xysppc DX nixb£E REC
SUBD aprx 16, xysppc IDx2 Al xbee £f EREE
SUBD[D.xysppc] [DIDX] (A3 xb fIfREE
SUBD [opre 18, xyspid] [IDX2] (A3zxbeeff fIerpf
Wil Sofware interrupt; (SPR-2=5F, IMH iF VEPSSPSSEY EEEEEEEE
RTHRTH =Mz Mgz, 4
(SP2=3F (Y Y = MaaMepy g
(SP2=5P; (XgX i=MsaMspe;
(5P -2=5P; (B:A)=MspMzgps1;
(5P-1=5P: (CCR}=Mzp:1=1:
(SWI vector=FPC
*The CPU also uses VSESSFSsFE for hardware interrupts and unimplemented cpeode traps. Resst uses a vanation of VEEEE.
TAB Transfer AtoB: (A)l=B INH 13 0E = EEEEPREE
TAP Transfer A to CCR: (A)1=CCR; INH ET 02 E FIEEEEEE
azsembled as TFRA, CCR
TBA TransferB to A (B)=A INH 19 OF o EEEEEELE|
TBEQ abdxysp,reid Test and branch if equal to O; if REL 04 lbrr EFF (oranch) EEEEEEEE|
(register)=0, then (PCH2+rel=PC |{0-bit) EEC (no branch)
TBL oprx0_xysppe Table lookup andinterpolate, 8-bit; 1D, 13 30xb CcRELER EEEEEERE|
(M o M+ T)= (M)]=A
TBME abdxysp.relf Test and branch if not egual to 0; if REL 0dlbrr EEF (branch) EEEEEEEE]
(register)20, then (PCH2+rel=FPC (B-bit) EEC (no branch)
TFR abodxysp,abodxysp Transfer register to register; INH ETeb E EEEEEEEE!
(F1=r2;r1 and rZ same size or ar
F00:(r1)=rZ;r1=8-b 18-bitar -
(F1L}=+r2:r1=18-bit: r2=5-bit ENEEEEEER
TRA Transfer CCRtoA; [CCRI=A; IMH B7 20 E EEEEEEEE
assembles as TFRCCR A
TRAP frapnum Trap unimplemented opcode; INH latn CWSESSESSE EEEEEEEE
(SP-2=5P; tn = §20-530
RTHyg:RTH =Mzp:Mzoys; or
(SP2=5P; (YR Y =Mz:Maps1; tn = $40-5FF
(SP2=5P; (XgX i=MsaMspe;
(5P -2=5P; (B:A)=MspMzgps1;
(5P -1=3F: (CCRI=Mzp:
1=l (trap vector)=PC
TST oprifa TestM; (M}-0 EXT F7hh1l TED EEEEPREE|
TST oprv_xysppc 1D ETxb rFf
TST oprxd, xyspoc D1 E7xbff TED
TST oprx 18 xysppe IDxZ E7 xbee £f frep
TET[D.xysped [DIDx] [E7xb ETfrEf
TST [oprx16.xysppd] DX2] E7 xbee ff FIPTEE
TSTA TestA:{AFD INH 37 o
TSTE Test8: (B0 INH o7 o

68HC12 Cycles

* 68HC12 works on 48 MHz clock

* A processor cycle takes 2 clock cycles — P clock is 24 MHz

* Each processor cycle takes 41.7 ns (1/24 us) to execute

* An instruction takes from 1 to 12 processor cycles to execute

* You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the Core Users Guide.

— For example, LDAA using the IMM addressing mode shows one CPU cycle (of type
P).

— LDAA using the EXT addressing mode shows three CPU cycles (of type rPf).

— Section A.27 of the Core Users Guide explains what the HCS12 is doing during

each of the different types of CPU cycles.

2000 org $2000 ; Inst Mode Cycles
2000 c6 0a Idab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 0431 fc dbne b,loop ; DBNE (REL) 3
2006 3f swi s SWI 9

The program executes the ldab #10 instruction once (which takes one cycle). It then goes
through loop 10 times (which has two instructions, on with one cycle and one with three
cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

1+10% (1+3)+9=50

50 cycles = 50 x 41.7 ns/cycle = 2.08 us

Cora User Gulde — 812CPUNEUG W1.2

LDAB

Operation

CCR
Effects

Code and
CPU
Cycles

408

(M)=B
ar
imm =B

Loads B with either the value in M or an immediate value.

s X H I N Z VW

Load B

c

[-[-T-T-TefeJo]-]

M: Sat If MEB of result s sel; clearad ohenwise
Z et f resut s $00; chaared olharwise

W Clearad

LDAB

Sourcs Form Addrass cg::'}'h":n CPU Cycles
LCAE =aprs! MM <6 11 v
LoAB aorda OiR D6 dd et
D8 ooriss EXT F6 bk 11 roc
LCAS oo ayseoe ox =6 zb £Pf
LA oo xyspoc Kl B xb ££ T
LOAS oo, xyspoc D2 =6 b s ££ frre
LOAS [0, xvsppd] [QUCX] |es xb EIfrRf
2245 [& xyeped] (0% le6 ob as ££ EIPTRE

Assembler Directives

* In order to write an assembly language program it is necessary to use assembler
directives.

* These are not instructions which the HC12 executes but are directives to the assembler
program about such things as where to put code and data into memory.

» We will use only a few of these directives. (Note: In the following table, [] means an
optional argument.) Here are the ones we will need:

Directive Name Description Example
equ Give a value to a symbol len: equ 100
org Set starting value of org $1000

location counter where code
or data will go

dc].size] Allocate and initialize var: dc.b 2,18
storage for variables. Size
can be b (byte) or w (two
bytes)

If no size is specified, b is
used

ds|.size] Allocate specified number | table: ds.w 10
of storage spaces. size is
the same as for dc directive

fce Encodes a string of ASCII | table: fcc "Hello"
characters. The first
character is the delimiter.
The string terminates at the
next occurrence of the
delimiter

Using labels in assembly programs

A label is defined by a name followed by a colon as the first thing on a line.

When the label is referred to in the program, it has the numerical value of the location
counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

org $2000
tablel:dc.b $23,$17,$2,$a3,$56
table2: ds.b 5
var: dc.w $43af

The as12 assembler produces a listing file (.Ist) and a symbol file (.sym). Here is the
listing file from the assembler:

asl2, an absolute assembler for Motorola MCU's, version 1.2e

2000 org $2000

2000 23 17 f2 a3 56 tablel: dc.b $23,$17,%$f2,%a3,$56
2005 table?2: ds.b 5

200a 43 af var: dc.w $43af

Executed: Sat Jan 15 13:19:23 2008
Total cycles: 0, Total bytes: 7
Total errors: 0, Total warnings: 0

Note that tablel is a name with the value of $2000, the value of the location counter
defined in the org directive. Five bytes of data are defined by the dc.b directive, so the
location counter is increased from $2000 to $2005.

table2 is a name with the value of $2005. Five bytes of data are set aside for table2 by the
ds.b 5 directive. The as12 assembler initialized these five bytes of data to all zeros. var is
a name with the value of $200a, the first location after table2.

