
 EE 308 Spring 2011

• An Example of Using the Stack
o An example of using the stack
o Including hcs12.inc in assembly language programs
o Using a mask in assembly language programs
o Using a subroutine with PORTA to make a binary counter on

LEDs

Examples of Using the Stack

Consider the following:

2000 org $2000
2000 cf 20 00 lds #$2000
2003 ce 01 23 ldx #$0123
2006 cc ab cd ldd #$abcd
2009 34 pshx
200a 36 psha
200b 37 pshb
200c 07 04 bsr delay
200e 33 pulb
200f 32 pula
2010 30 pulx
2011 3f swi

2012 34 delay: pshx
2013 ce 03 e8 ldx #1000
2016 04 35 fd loop: dbne x,loop
2019 30 pulx
201a 3d rts

 EE 308 Spring 2011

The following does not work; the RTS goes to the wrong place

2000 org $2000
2000 cf 20 00 lds #$2000
2003 ce 01 23 ldx #$0123
2006 cc ab cd ldd #$abcd
2009 34 pshx
200a 36 psha
200b 37 pshb
200c 07 04 bsr delay
200e 33 pulb
200f 32 pula
2010 30 pulx
2011 3f swi

2012 34 delay: pshx
2013 ce 03 e8 ldx #1000
2016 04 35 fd loop: dbne x,loop
2019 3d rts

 EE 308 Spring 2011

Using Registers in Assembly Language

• The DP256 version of the MC9S12 has lots of hardware registers

• To use a register, you can use something like the following:

PORTB equ $0001

• It is not practical to memorize the addresses of all the registers

• Better practice: Use a file which has all the register names with their addresses

#include "derivative.inc"

• Here is some of derivative.inc

;*** PORTA - Port A Register; 0x00000000 ***
PORTA: equ $0000 ;*** PORTA - Port A Register; 0x0000 ***
;*** PORTB - Port B Register; 0x0001 ***
PORTB: equ $0001 ;*** PORTB - Port B Register; 0x0001 ***
;*** DDRA - Port A Data Direction Register; 0x0002 ***
DDRA: equ $0002 ;*** DDRA - Port A Data Direction Register; 0x0002 ***
;*** DDRB - Port B Data Direction Register; 0x0003 ***
DDRB: equ $0003 ;*** DDRB - Port B Data Direction Register; 0x0003 ***

 EE 308 Spring 2011

Using DIP switches to get data into the MC9S12

• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an input port on the MC9S12

• The Dragon12-Plus has eight dip switches connected to Port H (PTH)

• The four least significant bits of PTH are also connected to push-button switches.

► If you want to use the push-button switches, make sure the DIP switches are in
the OFF position.

 EE 308 Spring 2011

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0.22 V)

 EE 308 Spring 2011

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PH3-PH0 is 0110

• Don’t know or care what are on the other 4 pins (PH7-PH4)

• Here is the wrong way to do it:

ldaa PTH
cmpa #$06
beq task

• If PH7-PH4 are anything other than 0000, you will not execute the task.

• You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

– To mask out don’t care bits, AND the bits with a mask which has 0’s in the
don’t
care bits and 1’s in the bits you want to look at.

ldaa PTH
anda #$0F
cmpa #$06
beq task

• Now, whatever pattern appears on PH7-4 is ignored

 EE 308 Spring 2011

Using an HC12 output port to control an LED

• Connect an output port from the HC12 to an LED.

 EE 308 Spring 2011

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

• Determine a number (hex or binary) which will generate each element of the pattern

– For example, to display a 0, turn on segments a, b, c, d, e and f, or bits 0, 1, 2, 3,
4 and 5 of PTH. The binary pattern is 0011 1111, or $3f.

– To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66, $7d, $7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

 EE 308 Spring 2011

Flowchart to display a pattern of lights on a set of LEDs

 EE 308 Spring 2011

as12, an absolute assembler for Motorola MCU’s, version 1.2h

; Program to display a pattern on a seven-segment LED display

#include "hcs12.inc"

2000 prog: equ $2000
1000 data: equ $1000
2000 stack: equ $2000

0005 table_len: equ (table_end-table)

2000 org prog
2000 cf 20 00 lds #stack ; initialize stack pointer
2003 86 ff ldaa #$ff ; Make PORTB output
2005 5a 03 staa DDRB ; 0xFF -> DDRB
2007 ce 10 00 l1: ldx #table ; Start pointer at table
200a a6 00 l2: ldaa 0,x ; Get value
200c 5a 01 staa PORTB ; Update LEDs
200e 07 08 bsr delay ; Wait a bit
2010 08 inx ; point to next
2011 8e 10 05 cpx #table_end ; More to do?
2014 25 f4 blo l2 ; Yes, keep going through table
2016 20 ef bra l1 ; At end; reset pointer
2018 36 delay: psha
2019 34 pshx
201a 86 64 ldaa #100
201c ce 1f 40 loop2: ldx #8000
201f 04 35 fd loop1: dbne x,loop1
2022 04 30 f7 dbne a,loop2
2025 30 pulx
2026 32 pula
2027 3d rts

1000 org data
1000 3f table: dc.b $3f
1001 5b dc.b $5b
1002 66 dc.b $66
1003 7d dc.b $7d
1004 7f dc.b $7F
1005 table_end:

 EE 308 Spring 2011

Putting a program into EEPROM on the Dragon12-Plus

• EEPROM from 0x400 to 0xFFF

• Program will stay in EEPROM memory even after power cycle

– Data will not stay in RAM memory

• If you put the above program into EEPROM, then cycle power, you will display a
sequence of patterns on the seven-segment LED, but the pattern will be whatever junk
happens to be in RAM

• To make sure you retain you patterns, put the table in the text part of your program, not
the data part

• If you use a variable which needs to be stored in data, be sure you initialize that variable
in your program and not by using dc.b.

 EE 308 Spring 2011

• Here is the above program with table put into EEPROM

• Also, I have included a variable var which I initialize to $aa in the program
– I don’t use var in the program, but included it to show you how to use a RAMbased
variable

#include "hcs12.inc"
prog: equ $0400
data: equ $1000
stack: equ $2000
table_len: equ (table_end-table)

org prog
lds #stack ; initialize stack pointer

moveb #$aa,var ; initialize var

ldaa #$ff ; Make PORTB output
staa DDRB ; 0xFF -> DDRB

l1: ldx #table ; Start pointer at table

l2: ldaa 0,x ; Get value
staa PORTB ; Update LEDs

bsr delay ; Wait a bit
inx ; point to next

cpx #table_end ; More to do?

blo l2 ; Yes, keep going through table
bra l1 ; At end; reset pointer

delay: psha
pshx
ldaa #100

loop2: ldx #8000
loop1: dbne x,loop1

dbne a,loop2
pulx
pula
rts

table: dc.b $3f
dc.b $5b
dc.b $66
dc.b $7d
dc.b $7F

table_end:
org data

var: ds.b 1 ; Reserve one byte for var

