
 EE 308 Spring 2011

• Introduction to Programming the 9S12 in C
• Huang Sections 5.2 and 5.3

o Comparison of C and Assembly programs for the HC12
o How to compile a C program using the GNU-C compiler
o Using pointers to access the contents of specific addresses in C
o Using the iodp256.h header file

Exam 1

• You will be able to use all of the Motorola data manuals on the exam.

• No calculators will be allowed for the exam.

• Numbers

– Decimal to Hex (signed and unsigned)
– Hex to Decimal (signed and unsigned)
– Binary to Hex
– Hex to Binary
– Addition and subtraction of fixed-length hex numbers
– Overflow, Carry, Zero, Negative bits of CCR

• Programming Model

– Internal registers – A, B, (D = AB), X, Y, SP, PC, CCR

• Addressing Modes and Effective Addresses

– INH, IMM, DIR, EXT, REL, IDX (Not Indexed Indirect)
– How to determine effective address

• Instructions

– What they do - Core Users Guide
– What machine code is generated
– How many cycles to execute
– Effect on CCR
– Branch instructions – which to use with signed and which with unsigned

 EE 308 Spring 2011

• Machine Code

– Reverse Assembly

• Stack and Stack Pointer

– What happens to stack and SP for instructions (e.g., PSHX, JSR)
– How the SP is used in getting to and leaving subroutines

• Assembly Language

– Be able to read and write simple assembly language program
– Know basic assembler directives – e.g., equ, dc.b, ds.w
– Flow charts

 EE 308 Spring 2011

Programming the HC12 in C

• A comparison of some assembly language and C constructs

Assembly	C
; Use a name instead of a num | /* Use a name instead of a num */
COUNT: EQU 5 | #define COUNT 5

 |
;---| /*-----------------------------*/
;start a program | /* To start a program */

org $1000 | main()
lds #0x3C00 | {

 | }
;---| /*-----------------------------*/

• Note that in C, the starting location of the program is defined when you compile the
program, not in the program itself.

• Note that C always uses the stack, so C automatically loads the stack pointer for you.

Assembly	C
;allocate two bytes for | /* Allocate two bytes for
;a signed number | * a signed number */

 |
 org $2000 |

i: ds.w 1 | int i;
j: dc.w $1A00 | int j = 0x1a00;
;---| /*-----------------------------*/
;allocate two bytes for | /* Allocate two bytes for
;an unsigned number | * an unsigned number */
i: ds.w 1 | unsigned int i;
j: dc.w $1A00 | unsigned int j = 0x1a00;
;---| /*-----------------------------*/
;allocate one byte for | /* Allocate one byte for
;an signed number | * an signed number */
 |
i: ds.b 1 | signed char i;
j: dc.b $1F | signed char j = 0x1f;

 EE 308 Spring 2011

 |
Assembly | C
;---| /*-----------------------------*/
;Get a value from an address | /* Get a value from an address */
; Put contents of address | /* Put contents of address */
; $E000 into variable i | /* 0xE000 into variable i */

 |
i: ds.b 1 | unsigned char i;

 |
ldaa $E000 | i = * (unsigned char *) 0xE000;
staa i |

 | /*-----------------------------------*/
 | /* Use a variable as a pointer
 | (address) */

 |
 | unsigned char *ptr, i;

 |
 | ptr = (unsigned char *) 0xE000;

 | i = *ptr;
 | *ptr = 0x55;
 |

;---| /*-----------------------------*/

• In C, the construct *(num) says to treat num as an address, and to work with the
contents of that address.

• Because C does not know how many bytes from that address you want to work with,
you need to tell C how many bytes you want to work with. You also have to tell C
whether you want to treat the data as signed or unsigned.

– i = * (unsigned char *) 0xE000; tells C to take one byte from address 0xE000,
treat it as unsigned, and store that value in variable i.

– j = * (int *) 0xE000; tells C to take two bytes from address 0xE000, treat it as
signed, and store that value in variable j.

– * (char *) 0xE000 = 0xaa; tells C to write the number 0xaa to a single byte at
addess 0xE000.

– * (int *) 0xE000 = 0xaa; tells C to write the number 0x00aa to two bytes
starting at addess 0xE000.

 EE 308 Spring 2011

Assembly | C
;---| /*-----------------------------*/
;To call a subroutine | /* To call a function */

ldaa i | sqrt(i);
jsr sqrt |

;---| /*-----------------------------*/
;To return from a subroutine | /* To return from a function */

ldaa j | return j;
rts |

;---| /*-----------------------------*/
;Flow control | /* Flow control */

blo | if (i < j)
blt | if (i < j)

 |
bhs | if (i >= j)
bge | if (i >= j)

;--| /*-----------------------------*/
 |

• Here is a simple program written in C and assembly. It simply divides 16 by 2. It does
the division in a function.

Assembly	C

 |
org $2000 | unsigned char i;

i: ds.b 1 |
 |
 | unsigned char div(unsigned char j);

org $1000 | main()
lds #$3C00 | {
ldaa #16 | i = div(16);
jsr div | }
staa i |
swi |

 |
div: asra | unsigned char div(unsigned char j)
rts | {

 | return j >> 1;
 | }

 EE 308 Spring 2011

A simple C program and how to compile it

Here is a simple C program

#define COUNT 5 Preprocessor directives (global vars.)

unsigned int i;

main() Begin program execution

{

i = COUNT; Variable assignment (terminated with ;)

}

1. Start CodeWarrior and create a new project.

2. On the Project Parameters menu, leave the C box checked, give the project a name,
and Set an appropriate directory.

3. On the C/C++ Options menu, select ANSI startup code, Small memory model, and
None for floating point format. Then select Finish. This will open a new project for a C
program.

4. Select Edit – Standard Settings. Select Target – Compiler for HC12, then click on
Options. Click on the Output tab, and select the Generate Listing File option. Click
OK, then OK.

5. C does not use an org statement to tell the compiler where to put code or data.
CodeWarrior uses a linker file called Project.prm. You will have to edit this file to
tell the compiler where to put your program and data. CodeWarrior has been set up
to put your program into Flash EEPROM starting at address 0xC000. In this class,
you will put your program into RAM starting at address 0x2000, or into EEPROM
starting at address 0x0400. In the window which lists the project files, select Project

Settings – Linker Files – Project.prm. Find the following line:

RAM = READ_WRITE 0x1000 TO 0x3FFF;

and change it to this:

RAM = READ_WRITE 0x1000 TO 0x2000;
PROG = READ_ONLY 0x2000 TO 0x3FFF;

 EE 308 Spring 2011

Next, find the line

INTO ROM_C000/*, ROM_4000*/;

and change it to

INTO PROG/*, ROM_4000*/;

Save and close Project.prm.

6. In the window which lists the project files, double-click on main.c. Modify the file to
look like this:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

void main(void) {

}

7. Enter your C program.

8. Select Project – Make. This will create a Project.abs.s19 file and a listing file main.lst
in the bin directory. You will need to delete the first line (which starts with S0) from the
Project.abs.s19 file.

9. If all went well, you should be able to download the Project.abs.sa9 file into the
MC9S12.

In the bin directory there will be several files with the .lst extension. The file Start12.lst
contains C startup code. The file main.lst shows the assembly language which was
produced by the C compiler.

 EE 308 Spring 2011

The Start12.lst is fairly long, because it contains uncompiled code for a lot of things we
do not use. Here are the portions of Start12.lst which we use. It just loads the stack
pointer, initializes any needed global data, zeros out the rest of the global data, and calls
the main.c code.

131: static void Init(void)
134: /* purpose: 1) zero out RAM-areas where data is allocated */
135: /* 2) copy initialization data from ROM to RAM */
139: ZeroOut:
0000 fe0000 [3] LDX _startupData:2
0003 fd0000 [3] LDY _startupData
0006 270e [3/1] BEQ CopyDown ;abs = 0016
148: NextZeroOut:
0008 35 [2] PSHY
000b ec31 [3] LDD 2,X+
185: NextWord:
000d 6970 [2] CLR 1,Y+
000f 0434fb [3] DBNE D,NextWord ;abs = 000d
0012 31 [3] PULY
0013 03 [1] DEY
0014 26f2 [3/1] BNE NextZeroOut ;abs = 0008
206: CopyDown:
0016 fe0000 [3] LDX _startupData:4
216: NextBlock:
0019 ec31 [3] LDD 2,X+
001b 270b [3/1] BEQ funcInits ;abs = 0028
257: Copy:
001f 180a3070 [5] MOVB 1,X+,1,Y+
0023 0434f9 [3] DBNE D,Copy ;abs = 001f
0026 20f1 [3] BRA NextBlock ;abs = 0019
271: funcInits: ; call of global construtors is only in 0028 3d [5] RTS

Function: _Startup
399: /* purpose: 1) initialize the stack
400: 2) initialize the RAM, copy down init data etc (Init)
401: 3) call main;
405:
406: /* initialize the stack pointer */
0000 cf0000 [2] LDS #__SEG_END_SSTACK
460: Init(); /* zero out, copy down, call constructors */
0003 0700 [4] BSR Init
469: main();
0005 060000 [3] JMP main
470: }

 EE 308 Spring 2011

Here is the main.lst file.

ANSI-C/cC++ Compiler for HC12 V-5.0.38 Build 9056, Feb 26 2009

1: #include <hidef.h> /* common defines and macros */
2: #include "derivative.h" /* derivative-specific definitions */
3: #define COUNT 5
4:
5: unsigned int i;
6:
7: void main(void) {

Function: main
8: i = COUNT;
0000 c605 [1] LDAB #5
0002 87 [1] CLRA
0003 7c0000 [3] STD i
9: }
0006 3d [5] RTS
10:

 EE 308 Spring 2011

The file Project.map shows where various things will be put in memory. It is fairly
long. Here are the relevant parts:

**
STARTUP SECTION
--
Entry point: 0x2029 (_Startup)

**
SECTION-ALLOCATION SECTION
Section Name Size Type From To Segment
--
.init 49 R 0x2000 0x2030 PROG
.startData 10 R 0x2031 0x203A PROG
.text 7 R 0x203B 0x2041 PROG
.copy 2 R 0x2042 0x2043 PROG
.stack 256 R/W 0x1000 0x10FF RAM
MODULE: -- main.c.o --
- PROCEDURES:

main 203B 7 7 1 .text
- VARIABLES:

i 1100 2 2 1 .common
MODULE: -- Start12.c.o --
- PROCEDURES:

Init 2000 29 41 1 .init
_Startup 2029 8 8 0 .init

- VARIABLES:
_startupData 2031 6 6 3 .startData

- LABELS:
__SEG_END_SSTACK 1100 0 0 1

This shows that the total program occupies addresses from 0x2000 to 0x2043. The stack
occupies addresses from 0x1000 to 0x10FF. Our variable i is located at address 0x1100.
The entry point to the program is at 0x2029. This means that, to run the program, you
need to tell DBug-12 to run the program from 0x2029, not from 0x2000:

g 2029

 EE 308 Spring 2011

Pointers in C

• To access a memory location:

*address

• You need to tell compiler whether you want to access 8-bit or 16 bit number, signed or
unsigned:

*(type *)address

– To read from an eight-bit unsigned number at memory location 0x2000:

x = *(unsigned char *)0x1000;

– To write an 0xaa55 to a sixteen-bit signed number at memory locations 0x1010 and
0x1011:

*(signed int *)0x1010 = 0xaa55;

• If there is an address which is used a lot:

#define PORTB (* (unsigned char *) 0x0001)

x = PORTB; /* Read from address 0x0001 */
PORTB = 0x55; /* Write to address 0x0001 */

• To access consecutive locations in memory, use a variable as a pointer:

unsigned char *ptr;

ptr = (unsigned char *)0x1000;
ptr = 0xaa; / Put 0xaa into address 0x1000 */
ptr = ptr+2; /* Point two further into table */
x = *ptr; /* Read from address 0x1002 */

• To set aside ten locations for a table:

unsigned char table[10];

• Can access the third element in the table as:

table[2]

 EE 308 Spring 2011

or as

*(table+2)

• To set up a table of constant data:

const unsigned char table[] = {0x00,0x01,0x03,0x07,0x0f};

This will tell the compiler to place the table of constant data with the program (which
might be placed in EEPROM) instead of with regular data (which must be placed in
RAM).

• There are a lot of registers (such as PORTA and DDRA) which you will use when
programming in C. Rather than having to define the registers each time you use them,
you can include a header file for the HC12 which has the registers predefined.
CodeWarrior includes the header mc9s12dp256.h which has all the registers predefined

Setting and Clearing Bits using Assembly and C

Setting and Clearing Bits in C

• You often need to set or clear bits of a hardware register.

– The easiest way to set bits in C is to use the bitwise OR (|) operator:

DDRB = DDRB | 0x0F; /* Make 4 LSB of Port B outputs */

– The easiest way to clear bits in C is to use the bitwise AND (&) operator:

DDRP = DDRP & ~0xF0; /* Make 4 MSB of Port J inputs */

 EE 308 Spring 2011

Program to make LEDs on Dragon12-Plus board count

#include "derivative.inc"

lds #$2000 ; Load stack pointer
bset DDRP,#$0F ; Make PP0-PP3 outputs
bset PTP,#$0F ; Turn off seven-seg LEDs
bset DDRJ,#$02 ; Make PJ1 output
bclr PRJ,#$02 ; Turn on individual LEDs
movb #$FF,DDRB ; Activate control lines for LEDs

loop: inc PORTB ;
bsr delay ; Wait a bit
bra loop ; Repeat

delay: ldy #100
l1: ldx #8000
l2: dbne x,l2

dbne y,l1
rts

 EE 308 Spring 2011

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#define D_1MS (24000/3) // Inner loop is 3 cycles
#define TRUE 1
void delay(unsigned int ms);

int main() {

DDRP = DDRP | 0x0F; /* Make PP0-PP3 outputs */
PTP = PTP | 0x0F; /* Turn off seven-seg LEDs */
DDRJ = DDRJ | 0x02; /* Make PJ1 output */
PTJ = PTJ & ~0x02; /* Turn on individual LEDs */
DDRB = 0xFF; /* Activate control lines for LEDs */
while (TRUE) { /* Repeat forever */

PORTB = PORTB + 1; /* Increment LEDs; */
delay(100); /* Wait a bit */

}
}

void delay (unsigned int ms) {

unsigned int i;
while (ms > 0) {

i = D_1MS;
while (i > 0) {

i = i - 1;
}
ms = ms - 1;

}
}

 EE 308 Spring 2011

Here is the main.lst file. Note that the inner loop of the delay() function (i = i - 1)
takes 3 cycles to execute.

9: DDRP = DDRP | 0x0F; /* Make PP0-PP3 outputs */
0000 1c00000f [4] BSET _DDRP,#15
10: PTP = PTP | 0x0F; /* Turn off seven-seg LEDs */
0004 1c00000f [4] BSET _PTP,#15
11: DDRJ = DDRJ | 0x02; /* Make PJ1 output */
0008 1c000002 [4] BSET _DDRJ,#2
12: PTJ = PTJ & ~0x02; /* Turn on individual LEDs */
000c 1d000002 [4] BCLR _PTJ,#2
13: DDRB = 0xFF; /* Activate control lines for LEDs */
0010 c6ff [1] LDAB #255
0012 5b00 [2] STAB _DDRAB:1

14: while (TRUE) { /* Repeat forever */
15: PORTB = PORTB + 1; /* Increment LEDs; */
0014 720000 [4] INC _PORTAB:1
16: delay(100); /* Wait a bit */
0017 c664 [1] LDAB #100
0019 87 [1] CLRA
001a 160000 [4] JSR delay
001d 20f5 [3] BRA *-9 ;abs = 0014
17: }
18: }

19: void delay (unsigned int ms)
20: {
0000 3b [2] PSHD
21: unsigned int i;
22: while (ms > 0) {
0001 200b [3] BRA *+13 ;abs = 000e
23: i = D_1MS;
0003 ce1f40 [2] LDX #8000
24: while (i > 0) {
0006 0435fd [3] DBNE X,*+0 ;abs = 0006
25: i = i - 1;
26: }
27: ms = ms - 1;
0009 ee80 [3] LDX 0,SP
000b 09 [1] DEX
000c 6e80 [2] STX 0,SP
000e ec80 [3] LDD 0,SP

 EE 308 Spring 2011

0010 26f1 [3/1] BNE *-13 ;abs = 0003
28: }
29: }
0012 3a [3] PULD
0013 3d [5] RTS

