Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

« More on Programming the 9512 in C

e Huang Sections 5.2 through 5.4

o Introduction to the MC9S12 Hardware Subsystems
« Huang Sections 8.2-8.6

« ECT_16B8C Block User Guide

e A summary of MC9S12 hardware subsystems

o Introduction to the MC9S12 Timer subsystem

« Resets on the HCS12

o Introduction to Interrupts on the Mc9s12

o Huang Sections 6.1-6.3

O

The MC9S12 has a 16-bit free-running counter to determine the
time and event happens, and to make an event happen at a
particular time

The counter is normally clocked with an 8 MHz clock

The Timer Overflow (TOF) bit —when the time rolls over from
0x0000 to OxFFFF it sets a flip-flop to show that it has
happened

The time Prescaler (PR2:0) bit of Timer Interrupt Mask 2
(TMSK?2) register: Allows you to change the frequency of the
clock driving the 16-bit counter

What happens when you reset the HCS12/

Introduction to Interrupts

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Hello, World!
* Here is the standard "hello, world” program:
#include <stdio.h>
main()

{
}

printf("hello, world\r\n");

* To write the "hello, world” program, you need to use the printf() function.
* The printf() function is normally a library function
* In CodeWarrior, you can access printf() by doing the following:

1. In your C program, add the following lines:

#include <stdio.h>
#include <termio.h>

2. In CodeWarrior, select Project, Add Files, and select the file termio.c.
This is in the CodeWarrior library, which is in the following location on my
computer:

c:\Program Files\Freescale\CodeWarrior for S12(X) V5.0Mib\hc12c\src
Your C program will look like this:

#include <stdio.h>

#include <termio.h>

main()

{
printf("hello, world\r\n");
__asm(swi);

}

* The above program is about 1,500 bytes long.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* You can print out variables as well. Here is an example:

#include <stdio.h>
#include <termio.h>

main()

{ . .
nt1;
for (1=0;i<100;i++) printf("i = %d\r\n",1);
__asm(swi);

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Introduction to the MC9S12 Timer Subsystem
* The MC9S12 has a 16-bit counter that normally runs with a 24 MHz clock.

* Complete information on the MC9S12 timer subsystem can be found in the ECT 16B8C
Block User Guide. ECT stands for Enhanced Capture Timer.

* When you reset the MC9S12, the clock to the timer subsystem is initially turned off to
save power.

— To turn on the clock you need to write a 1 to Bit 7 of register TSCR1

(Timer System Control Register 1) at address 0x0046.

* The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until it gets to OXFFFF. It
rolls over from OxFFFF to 0x0000, and continues counting forever (until you turn the
counter off or reset the MC9S12).

* It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the counter to count from
0x0000 to OxFFFF and roll over to 0x0000.

* To determine the time an event happens, you can read the value of the clock (by reading
the 16-bit TCNT (Timer Count Register) at address 0x0044.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Bus clock ———=F = Frescaler

Modulus counter

Interropt

Timer overflow

interrupt -]

Timer channel 0

interrupt -]
g
-
|
R a—
|
-

Timer channel 7

interrupt

FPA overflow -

interrupt

PA input

interrupt

FB overflow -

interrupt

16-bit Counter

16-hit Modulus Counter

Registers

16-hit
Pulse accumulaion &

10-hit
Pilse accumulaior B

i 1

Channel 0

Input capiure
UTOUT comipare

Channel 1

Input capiure
Culout compare

Channel 2

[npUt capiure
Ciutout compare

Channel 3

Input capture
UiDUt conipare

ooy

Channel 4

Input capturs
LUTDUT compare

Channel 5

InpUt capture
Cutout compare

Channel 6

Input capiure
Dutout compare

Channel 7

ot

‘L|_4

Input capture
LTDUL comoare

’L|_$

- |OC0

| D]

o | DT 2

= | D23

- |0C4

- | DJC5

- | DT

e | DCT

When you enable the timer (by writing a 1 to bit 7 of TSCR1), you connect a 24-MHz

Figure 1-1 Timer Block Diagram

Timer inside the MC9S12:

oscillator to a 16-bit counter.

You can read the counter at address TCNT.

The counter will start at O, will count to OxFFFF, then will roll over to 0x0000. It will
take 2.7307 ms for this to happen.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1
i
16-Bit Counter
24 MHz
TEN TCNT (addr Ox4d)

(Bit7 of TSCA1, addr Ox46)

To enable timer on MC9S12, set Bit 7 of register TCSR1:

bset TSCRI1,#$80 TSCRI1 = TSCR1 | 0x80;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

3.3.6 TSCR1 — Timer System Control Register 1

Register offset: $_06

BITT B 5 4 3 2 1 BITD
R o]
w TEN TSWAI TSFRZ TFFCA
RESET: o] 0 o] 0 o]
= Unimplemeanied or Resenved

Figure 3-6 Timer System Control Register 1 (TSCR1)

Read or writs anvtime.

TEN — Timer Enable
() = Diisables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer o function normally.

If for any reason the tmer is not active, there is no <64 clock for the pulse accumulator since: the <64
is generated by the timer prescaber.

TEWAI — Timer Module Stops While in Wait
0 = Allows the timer moduole to continue running during wait
1 = Disables the tmer module when the MCU is in the wait mode. Timer interrupts canmot be nsed
to get the MCU out of wait

TSWAL also affects pulse accumulators and modulus down counters,

TSFRZ — Timer and Modulus Counter Stop While in Freeze Mode
(1 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = [Hisahles the timer and modulus counter whenever the MCU is in freere mode. This is useful
for emulation.

TSFRY dozs not stop the pulse sccumulator,

TFFCA — Timer Fast Flag Clear All

0 = Allows the timer flag clearing to function normally .

1 = For TFLG1(30E), a read from an input capiure or a write o the output compare channe|
(S10-51F) causes the corresponding channel flag, CoF, to be cleared. For TFLG2 (80F), any
access to the TCNT register (304, 305) clears the TOF flag. Any access to the PACN3 and
PACNZ megisters (522, $23) clears the PAOVE and PAIF flags in the PAFLG register ($21).
Any access to the PACNI and PACNO registers (524, $25) clears the PEOVF flag in the
PBFLG register (£31). This has the advantage of eliminating softwane overhead in a separate
clear sequence. Extra cane is required to avoid accidental flag clearing due to unintended
ACCOSSE.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

3.3.4 OCVD — Output Compare 7 Data Register
Register offset: §_03

BIT? [= 4 3 2 1 EITD
R
W ocToT OC7DE OCTDS oCTD4 oCT7D3 QCTD2 oCcTD G700
RESET: 0 0 b 0 0 0 0 b

Figure 3-4 Output Compare 7 Data Register (OCTD)

Read or write any time.

A channel 7 output compare can cause bits in the output compare 7 data register to transfer to the timer
port data register depending on the output compare 7 mask register.

3.3.5 TCNT — Timer Count Register

Register offset: §_04-%_05
BITiS 14 13 12 11 10]

g 2 1 EITD
R tent | fznt | tomt | feni | tent | bomt | fon? | tend

g

0

-] 3
tent | tont | font | tomt | ftend | tent | tont
-] 3
o 0

W 15 14 13 12 11 10 o
RESET. a D 0] o a D

T
ficnd
T

] o o a

Figure 3-5 Timer Count Register (TCHNT)

The 16-bit main timer is an up counter.

A full access for the counter register should take place in one clock cycle. A separate read'write for high
byte and low byte will give a different result than accessing them as a word.

Read any time.
Write has no meaning or effect in the normal mode; only writable in special modes (test_mode = 1)

The period of the first count afier a write to the TCNT registers may be a different size because the write
is not synchronized with the prescaler clock.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* To put in a delay of 2.7307 ms, you could wait from one reading of 0x0000 to the next
reading of 0x0000.

* Problem: You cannot read the TCNT register quickly enough to make sure you will see
the 0x0000.

To put in a delay for 2.7307 ms, could watch timer until TCNT == 0x0000:

bset TSCRI1,#$80 TSCR1 = TSCRI1 | 0x80;
11: 1dd TCNT while (TCNT != 0x0000) ;
bne 11

Problem: You might see OxFFFF and 0x0001, and miss 0x0000

16=-Bit Counter
TCNT {addr Oxdd)

24 MHz

TEN
(Bit 7 of TSCR1, addr Ox4E)

* Solution: The MC9S12 has built-in hardware with will set a flip-flop every time the
counter rolls over from OxFFFF to 0x0000.

* To wait for 2.7307 ms, just wait until the flip-flop is set, then clear the flip-flop, and
wait until the next time the flip-flop is set.

* You can find the state of the flip-flop by looking at bit 7 (the Timer Overflow Flag
(TOF) bit) of the Timer Flag Register 2 (TFLG2) register at address 0x004F.

* You can clear the flip-flop by writing a 1 to the TOF bit of TFLG2.

Solution: When timer overflows, it latches a 1 into a flip—flop. Now when timer
overflows (goes from OxFFFF to 0x0000), Bit 7 of TFLG2 register is set to one. Can
clear register by writing a 1 to Bit 7 of TFLG register.

(Note: Bit 7 of TFLG2 for a read is different than
Bit 7 of TFLG2 for a write)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1
1
TIMER OVERFLOW INTERRUPT
LleH]
L. N .
(Bt 7 of TFLEZ., addr [maF)
— - 16-Blt Counter Craorfiow -
TEN TONT {mddr Duds) -

{BIt7 of TECR1, addr ndg

TOF
Wi
(Bl 7 of TFLGE. addr (ndF)
bset TSCR1,#$80 ; Enable timer TSCR1 = TSCR1 | 0x80; //Enable timer

11: brelr TFLG2,#$80,11 ; Wait until Bit 7 of TFLG?2 is set while ((TFLG2 & 0x80) == 0) ; // Wait for TOF
1daa #$80

program ... program ...

staa TFGL2 ; Clear TOF flag TFLG2 = 0x80; /I Clear TOF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

3.3.13 TFLGZ — Main Timer Interrupt Flag 2

Register offset: §_OF
BITT -]] 4 3

BITO
R 0] 0] a 1] a
TOF
W
RESET: a 0 o 0 o a 1] a

= Unimglemenied or Reserved
Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when intermupt conditions have occurred. To clear a bit in the flag register, write the bit
o one.

Read any ime. Write used in clearing mechanism (set bits cause cormesponding bits to be cleared).
Amny acoess o TCNT will clear TFLG2 megister if the TFFCA bit in TSCR register is set.
TOF — Timer Cwerflow Flag

Set when 16-bit free-running timer overflows from SFFFF to $0000. This bit is cleared antomatically
by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

* Another problem: Sometimes you may want to delay longer than 2.7307 ms, or time
an event which takes longer than 2.7307 ms. This is hard to do if the counter rolls over

every 2.7307 ms.

* Solution: The MC9S12 allows you to slow down the clock which drives the counter.

* You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8, 16, 32, 64 or

128.

* You do this by writing to the prescaler bits (PR2:0) of the Timer System Control

Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can slow down clock by
dividing it before you send it to the 16—bit counter. By setting prescaler bits

PR2,PR1,PR0 of TSCR2 you can slow down the clock:

PR
000
001
010
011
100
101
110
111

Divide
1

2

4

8

16

32

64

128

Freq Overflow Rate
24 MHz 2.7307 ms

12 MHz 5.4613 ms

6 MHz 10.9227 ms

3 MHz 21.8453 ms

1.5 MHz 43.6907 ms
0.75 MHz 87.3813 ms
0.375S MHz 174.7627 ms
0.1875 MHz 349.5253 ms

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80
ldaa #$05
staa TSCR2

TSCR1 =TSCR1 | 0x80;
TSCR2 = 0x05;

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

TIMER OVERFLCW INTERRUPT

Vo
| ror
o & B
{BIt 7 of TFLEZ addr 0xdF)
— -~ s 1681t Countar Owastion -
TEN TONT jadar trdd) .
{BIt7 of TECR1, addr uds)
PR[Z0]
{ESis 2-0 of TSCAZ, addr (edl) TOF
Wil

(ERT of TFLGZ addr 0r4F)

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology
1

3.3.10 TIE — Timer Interrupt Enable Register
Register offset: §_0C

BIT? G o 4 3 2 1 BT
R
w cT]| ca c4l 3l ca C1l =]
RESET:] a] o] o a o

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE comespond bit-for-bit with the bits in the TFLG1 status register. If cleared, the
cormzsponding flag is disabled from causing a hardware interrupt. If set, the comesponding flag is enabled

10 cause a Inkerrupt.

CTHCO — Input Capture/Chutput Compars “x” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Register offset: §_00D

BITT -] 5 4 3 2 1 EITO
R o o o
TO! TCRE PR2 PR1 PRO
RESET a o] o] a o]

= Unimplemented or Resened

Figure 3-11 Timer System Control Register 2 (TSCR2)

Eead or write anytime.

Tl — Timer Overflow Inkerrupt Enable
() = Interrupt inhibited
1 = Hardware interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable
This bit allows the timer counter © be reset by a successful output compare 7 event. This mode of
operation is similar to an up-counting modulus counter.
() = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7
If TCT = 530000 and TCRE = 1, TCNT will stay at S0000 continuously. If TCT = 3FFFF and TCRE =
1, TOF will never be set when TOMT is reset from $FFFF w 50000,

PRZ, PRI, PRO— Timer Prescaler Select

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

ECT_1688C Block User Guide W01.03

These thmee bits specify the number of +2 stages that ame 1o be inseried between the bus clock and the
miain Hmer counter.

Table 34 Prescaler Selection

PR2 PR1 PRO Prescale Factor
' a i] 1
o a 1 2
o 1 o] 4
o 1 1 g
1 a i} 16
1 a 1 32
1 1 o] B4
1 1 1 128

The newly selected prescale factor will not take effect until the next synchronized edge where all
prescake counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Register offset: §_0E

BTy]] 4 3 2 1 Bima
R
GTF CEF C5F C4F C3F C2F C1F COF
RESET:] a] o]] 1] a o]

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicakes when interrupt conditions have occurred. To clear a bit in the flag register, write a one
to the bit.

TFL(1 indicates when interrupt conditions have occurred. To clear a bit in the flag register, wrile a one
to the bit.

Use of the TFMOD bit in the ICSY S register (S2H) in conjunction with the use of the [COVW regiser

(32A) allows a timer intzrrupt to be penerated after capturing two values in the capture and holding
megisters instead of generating an interrupt for every capture.

Read any time. Write used in the chearing mechanizm (set bits cause cormsponding bits to be cleared).
Writing a zero will not affect curment status of the bit.

When TFFCA bit in TSCR register is set, a read from an input capture or a write into an outpul compars
channel ($10-%1F) will cause the cormesponding channel flag CoF to be cleaned.

CTF-COF — Input Capture/Cutput Compare Channel “n” Flag.

(0F can also be st by 16 - bit Pulse Accumulator B {PACB). C3F - COF can also be s=t by 8 - bit pulse
accumulators PACS - PACD.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Setting and Clearing Bits in C

* To put a specific number into a memory location or register (e.g., to put 0x55 into
PORTA):

movb #$55,PORTA PORTA = 0x55;

* To set a particular bit of a register (e.g., set Bit 4 of PORTA) while leaving the other
bits unchanged do a bitwise OR of the register and a mask which has a 1 in the bit(s) you
want to set, and a O in the other bits:

bset PORTA #$10 PORTA = PORTA | 0x10;

* To clear a particular bit of a register (e.g., clear Bit 5 of PORTA) while leaving the
other bits unchanged do a bitwise AND of the register and a mask which has a 0 in the
bit(s) you want to clear, and a 1 in the other bits. You can construct this mask by
complementing a mask which has a 1 in the bit(s) you want to set, and a O in the other
bits:

belr PORTA #$20 PORTA = PORTA & 0xDF;
or
PORTA = PORTA & ~0x20;

* To change several bits of a register, AND the register with 1°s in the bits you want to
leave unchanged, then OR the result with 1’s in the bits you want to set, and 0’s in the
bits you want to clear. For example, to set bits 2 and 0, and clear bit 1 (write 101 to bits
2-0) of TSCR2, do the following:

belr TSCR2,#$02 TSCR2 = (TSCR2 & ~0x02) | 0x05;
bset TSCR2,#05

» Write to all bits of a register when you know what all bits should be, such as when
you initialize it. Set or clear bits when you want to change only one or a few bits and
leave the others unchanged.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

C Program to implement a delay

#include <hidef.h>
#include "derivative.h"
void delay(void);
main()
{
TSCR1 =TSCRI1 | 0x80; /* Enable timer subsystem */
TSCR2 = 0x05; /* Set overflow time to 87 ms */
TFLAG?2 = 0x80; /* Make sure TOF bit clear */
while (1) {
PORTB = PORTB + 1;
delay();

}

void delay(void)

{
while ((TFLAG2 & 0x80) == 0x00) ; /* Wait for timer overflow */

TFLAG2 = 0x80; /* Clear TOF bit */
}

* Problem: Cannot do anything while waiting

* Solution: Interrupt — can do other things, and hardware will signal processor when
overflow occurs

* Need to understand how processor handles exceptions — resets and interrupts

* Start by looking at what happens when the MC9S12 is reset

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

What Happens When You Reset the MC9S12?

* What happens to the MC9S12 when you turn on power or push the reset button?

e How does the MC9S12 know which instruction to execute first?

¢ On reset the MC9S12 loads the PC with the address located at address OxFFFE and

OxFFFF.

* Here is what is in the memory of our MC9S12:

0

1

2

3

4

b

&

=

E| ©| D

FFFO

Fi&

EC

F5

FO

F&

F4

Fi&

F&

F5

FC

F7

0 FT |04

E| F
FO | 00

* On reset or power-up, the first instruction your MC9S12 will execute is the one located

at address 0xF000.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Introduction to Interrupts
Can implement a delay by waiting for the TOF flag to become set:

void delay(void)

{
while ((TFLG2 & 0x80) ==0) ;
TFLG2 = 0x80;

Problem: Can’t do anything else while waiting.
Solution: Use an interrupt to tell you when the timer overflow has occurred.

Interrupt: Allows the HCS12 to do other things while waiting for an event to happen.
When the event happens, tell HCS12 to take care of event, then go back to what it was
doing.

What happens when HCS12 gets an interrupt: HCS12 automatically jumps to part of
the program which tells it what to do when it receives the interrupt (Interrupt Service
Routine).

How does HCS12 know where the ISR is located: A set of memory locations called
Interrupt Vectors tell the HCS12 the address of the ISR for each type of interrupt.

How does HCS12 know where to return to: Return address pushed onto stack before
HCS12 jumps to ISR. You use the RTI (Return from Interrupt) instruction to pull the
return address off of the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed onto stack before
jumping to ISR, and pulled off the stack before returning to program. When you execute
the RTI instruction at the end of the ISR, the registers are pulled off of the stack.

What happens if you get an interrupt while in an ISR: MC9S12 disables interrupts
(sets I bit of CCR) before it starts executing ISR.

To Return from the ISR You must return from the ISR using the RTT instruction. The
RTT instruction tells the HCS12 to pull all the registers off of the stack and return to the
address where it was processing when the interrupt occurred.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

How to generate an interrupt when the timer overflows

VL
I_ oF
o G

(BRT of TRLOL, addr ludF)

%‘c::hl — 18- it Comntbar Dvariow :
- TOHT {addr fudd) a
CEIT of TSLRT, addr duds) B
(B3 2-0 of T3CR2, addr k4T Tos
‘Wil
(BRT of TFLE2 addr T4y Inbormapt
T ER 1Bt
TaChR2 CoR
(BT ol TSEEL addr dDy (Enolk By dearing |t wan CL eak
(Enaiiy by s tiing BT of TACRD

To generate a TOF interrupt: Inside TOF ISR:
Enable timer (set Bit 7 of TSCR1) Take care of event
Set prescaler (Bits 2:0 of TSCR2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Enable TCF interrupt (set Bit 7 of TSCR2) Return with RTI
Enable interrupts (clear I bit of CCR)
#include <hidef.h>
#include "derivative.h"
main()
{

__asm(sei); /* Disable interrupts */

DDRA = 0xfft; /* Make Port A output */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x85; /* Enable timer overflow interrupt, set prescaler */

TFLG2 = 0x80; /* Clear timer interrupt flag */

__asm(cli); /* Enable interrupts (clear I bit) */

while (1)

{

/* Put code here to do things */

}
}
void INTERRUPT toi_isr(void)
{

PORTB = PORTB + 1; /* Increment Port A */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

TFLG2 = 0x80; /* Clear timer interrupt flag */

