
 EE 308 Spring 2011

• Addition and Subtraction of Hexadecimal Numbers
• Simple assembly language programming
• Huang, Section 2.2
• HC12 Addressing Modes
• Huang, Sections 1.6 and 1.7

o A simple Assembly Language Program
o Assembling an Assembly Language Program
o Simple 9S12 programs
o Hex code generated from a simple 9S12 program
o Things you need to know for 9S12 assembly language

programming
o HC12 Addressing Modes
o Inherent, Extended, Direct, Immediate, Indexed, and Relative

Modes
o Summary of 9S12 Addressing Modes

Assembling an Assembly Language Program

• A computer program called an assembler can convert an assembly language program
into machine code.

• The assembler we use in class is a commercial compiler from Freescale called
CodeWarrior.

•How to use CodeWarrior is discussed in Lab 1 and in Huang.

• The assembler will produce a file called main.lst, which shows the machine code
generated.

 EE 308 Spring 2011

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at 0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

This will produce a file called Project.abs.s19.

S06B0000433A5C446F63756D656E747320616E642053657474696E6773
S1051000A20048
S10B2000B61000427A10013F02
S9030000FC

We can load into the MC9S12.

S1051000A20048
S10B2000B61000427A10013F02
S9030000FC

• The first line of the S19 file starts with a S0: the S0 indicates that it is the first line.

• The last line of the S19 file starts with a S9: the S9 indicates that it is the last line.

• The other lines begin with a S1: the S1 indicates these lines are data to be loaded
into the MC9S12 memory.

 EE 308 Spring 2011

• Here is the second line (with some spaces added):

S1 0B 2000 B6 1000 42 7A 1001 3F 02

• On the second line, the S1 if followed by a 0B. This tells the loader that there this line
has 11 (0x0B) bytes of data follow.

• The count 0B is followed by 2000. This tells the loader that the data (program) should
be put into memory starting with address 0x2000.

• The next 16 hex numbers B61000427A10013F are the 8 bytes to be loaded into
memory. You should be able to find these bytes in the main.lst file.

• The last two hex numbers, 0x02, is a one byte checksum, which the loader can use to
make sure the data was loaded correctly.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at 0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

 EE 308 Spring 2011

What will program do?

• ldaa input : Load contents of 0x1000 into A

(0xA2 into A)

• inca : Increment A

(0xA2 + 1 = 0xA3 -> A)

• staa result : Store contents of A to address 0x1001

(0xA3 -> adress 0x1001)

• swi : Software interrupt (Return control to DBug-12 Monitor)

Simple Programs for the MC9S12

A simple MC9S12 program fragment

org $2000
ldaa $1000
staa $1001

A simple MC9S12 program with assembler directives

prog: equ $2000
data: equ $1000

org prog
ldaa input

 asra
staa result
swi

org data

input: dc.b $07
result: ds.b 1

 EE 308 Spring 2011

MC9S12 Programming Model — The registers inside the MC9S12 CPU the programmer
needs to know about

Things you need to know to write MC9S12 assembly language programs

HC12 Assembly Language Programming

Programming Model

MC9S12 Instructions

Addressing Modes

Assembler Directives

Addressing Modes for the HCS12

• Almost all HCS12 instructions operate on memory

• The address of the data an instruction operates on is called the effective address of that
instruction.

• Each instruction has information which tells the HCS12 the address of the data in
memory it operates on.

• The addressing mode of the instruction tells the HCS12 how to figure out the effective
address for the instruction.

 EE 308 Spring 2011

• Each HCS12 instructions consists of a one or two byte op code which tells the HCS12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the HCS12 how to determine the effective address.

– All two-byte op codes begin with an $18.

• For example, the LDAA instruction has 4 different op codes, one for each of the 4
different addressing modes.

 EE 308 Spring 2011

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective address:
Memory address used by instruction

Addressing mode:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

 EE 308 Spring 2011

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) → A
18 06

CLRA ; Clear A 0 → A
87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) − 0x00 Set CCR
97

The HC12 does not access memory

There is no effective address

 EE 308 Spring 2011

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $1000 ; ($1000) → A
B6 10 00 Effective Address: $1000

LDX $1001 ; ($1001:$1002) → X
FE 10 01 Effective Address: $1001

STAB $1003 ; (B) → $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op code

 EE 308 Spring 2011

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) → A
96 20 Effective Address: $0020

STX $21 ; (X) → $0021:$0022
5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

 EE 308 Spring 2011

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 ; $17 → A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A → A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

 EE 308 Spring 2011

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)

Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X− ; Post−decrement Indexed

; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

INC 4,+X ; Pre−increment Indexed

; Add 4 to X
; then increment the number at address (X)

62 23 Effective address: contents of X + 4

 EE 308 Spring 2011

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details

• IDX: One byte used to specify address

– Called the postbyte
– Tells which register to use
– Tells whether to use autoincrement or autodecrement
– Tells offset to use

• IDX1: Two bytes used to specify address

– First byte called the postbyte
– Second byte called the extension
– Postbyte tells which register to use, and sign of offset
– Extension tells size of offset

• IDX2: Three bytes used to specify address

– First byte called the postbyte
– Next two bytes called the extension
– Postbyte tells which register to use
– Extension tells size of offset

 EE 308 Spring 2011

 EE 308 Spring 2011

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(BRA) 20 35 PC + 2 + 0035 → PC

(BRA) 20 C7 PC + 2 + FFC7 → PC

 PC + 2 − 0039 → PC

Long branch instruction: Two bytes following op code specifies how far to branch
Treat the offset as an unsigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A → PC

If Z == 0 then PC + 4 → PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA $1030 ; Branch to instruction at address $1030

 EE 308 Spring 2011

Summary of HCS12 addressing modes

ADDRESSING MODES

A few instructions have two effective addresses:

• MOVB $2000,$3000 ;move byte from address $2000 to $3000
• MOVW 0,X,0,Y ;move word from address pointed to by X to address

;pointed to by Y

