Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

¢ Addition and Subtraction of Hexadecimal Numbers
« Simple assembly language programming

« Huang, Section 2.2

« HC12 Addressing Modes

« Huang, Sections 1.6 and 1.7

o

o

o

o

A simple Assembly Language Program

Assembling an Assembly Language Program

Simple 9S12 programs

Hex code generated from a simple 9S12 program

Things you need to know for 9S12 assembly language
programming

HC12 Addressing Modes

Inherent, Extended, Direct, Immediate, Indexed, and Relative
Modes

Summary of 9S12 Addressing Modes

Assembling an Assembly Language Program

* A computer program called an assembler can convert an assembly language program
into machine code.

* The assembler we use in class is a commercial compiler from Freescale called

CodeWarrior.

*How to use CodeWarrior is discussed in Lab 1 and in Huang.

* The assembler will produce a file called main.lst, which shows the machine code

generated.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj.code Source line

1
2 2 0000 2000 prog equ $2000 ; Start program at 0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000

4 4

5 5 org prog

6 6

7 7 a002000 B610 00 Idaa input

8 8 a002003 42 inca

9 9 a002004 7A10 01 staa result

10 10 a002007 3F SWi

11 11

12 12 org data

13 13 a001000 A2 input: dc.b $A2

14 14 a001001 result: ds.b 1

This will produce a file called Project.abs.s19.
S06B0000433A5C446F63756D656E747320616E642053657474696E6773
S1051000A20048

S10B2000B61000427A10013F02

S9030000FC

We can load into the MC9S12.

S1051000A20048

S10B2000B61000427A10013F02
S9030000FC

o The first line of the S19 file starts with a SO: the SO indicates that it is the first line.
o The last line of the S19 file starts with a S9: the S9 indicates that it is the last line.

¢ The other lines begin with a S1: the S1 indicates these lines are data to be loaded
into the MC9S12 memory.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

e Here is the second line (with some spaces added):

S1 0B 2000 B6 1000 42 7A 1001 3F 02

¢ On the second line, the S1 if followed by a 0B. This tells the loader that there this line
has 11 (0x0OB) bytes of data follow.

¢ The count OB is followed by 2000. This tells the loader that the data (program) should
be put into memory starting with address 0x2000.

e The next 16 hex numbers B61000427A10013F are the 8 bytes to be loaded into
memory. You should be able to find these bytes in the main.lst file.

¢ The last two hex numbers, 0x02, is a one byte checksum, which the loader can use to
make sure the data was loaded correctly.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj.code Source line

1
2 2 0000 2000 prog equ $2000 ; Start program at 0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000

4 4

5 5 org prog

6 6

7 7 a002000 B610 00 Idaa input

8 8 a002003 42 inca

9 9 a002004 7A10 01 staa result

10 10 a002007 3F SWi

11 11

12 12 org data

13 13 a001000 A2 input: dc.b $A2

14 14 a001001 result: ds.b 1

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

What will program do?

* ldaa input : Load contents of 0x1000 into A
(0xA2 into A)

e inca: Increment A
(0xA2 + 1 =0xA3 > A)

e staaresult : Store contents of A to address 0x1001
(0xA3 -> adress 0x1001)

°*swi Software interrupt (Return control to DBug-12 Monitor)

Simple Programs for the M(C9S12

A simple MC9S12 program fragment

org $2000
ldaa $1000
staa $1001

A simple MC9S12 program with assembler directives

prog: equ $2000
data: equ $1000

org prog
ldaa input
asra
staa result
swi
org data
input: dc.b $07

result: ds.b 1

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

MC9S12 Programming Model — The registers inside the MC9S12 CPU the programmer
needs to know about

Al 4 n| 7 o|B
15 0iD
l15 0| %
15 | ¥
s o| 2
l1s o PC

LIT T T]] Je=

S X H I N EZ WV C

Things you need to know to write MC9S12 assembly language programs

HC12 Assembly Language Programming
Programming Model
MC9S12 Instructions
Addressing Modes

Assembler Directives

Addressing Modes for the HCS12
* Almost all HCS12 instructions operate on memory

* The address of the data an instruction operates on is called the effective address of that
instruction.

¢ Each instruction has information which tells the HCS12 the address of the data in
memory it operates on.

* The addressing mode of the instruction tells the HCS12 how to figure out the effective
address for the instruction.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Each HCS12 instructions consists of a one or two byte op code which tells the HCS12
what to do and what addressing mode to use, followed, when necessary by one or more
bytes which tell the HCS12 how to determine the effective address.

— All two-byte op codes begin with an $18.

* For example, the LDAA instruction has 4 different op codes, one for each of the 4
different addressing modes.

Core User Guide — $12CPU15UG V1.2

LDAA Load A LDAA

Operation (M)= A
or
imm = A

Loads A with either the value in M or an immediate value.

CCR

Effects § X H ! N £ WV C
-[-1-1-Tafafe]-]
M: Set if MSB of result is set; cleared otherwise
Z: Setif result is $00; cleared otherwise
V> Cleared

Code and

CPU Source Form AE‘%?;’S ngg?ﬂfﬂ CPU Cycles

Cycles
LDAA #opréi MM 8e i1 b
LDAA opraa DIR %6dd rPf
LDAA oprisa EXT Béhhl1l PO
LDAA oprx0_xysppc 1D Ag ¥xb rPf
LDAA oprxD, xysppc DA AE xb T PO
LDAA oprx18 xysppe IDX2 AS b ee £F frep
LDAA [D,xysppc] [DID] A& xb EIfrPE
LDAA [oprx 18, xysppc [Dx2] A6 b ce £f FIDTDE

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The HCS12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective address:
Memory address used by instruction

Addressing mode:
How the HC12 calculates the effective address

HC12 ADDRESSING MODES:
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ;AddBtoA(A)+(B) > A
18 06

CLRA ;Clear A0 — A

87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) — 0x00 Set CCR
97

The HC12 does not access memory

There is no effective address

0x1000 17 0x2000 18 A 62 97 B
35 06
X B2C5
02 87
AR a7
7 a7

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The Extended (EXT) addressing mode

Instructions which give the 16-bit address to be accessed

LDAA $1000 ; ($1000) — A

B6 10 00 Effective Address: $1000
LDX $1001 ; ($1001:$1002) — X
FE 1001 Effective Address: $1001
STAB $1003 ; (B) = $1003

7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op code

0x1000| . 0x2000| pg A 00 97
35 10
X A2C5
02 00
A FE
C7 10
01
7B
10
03

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; (50020) — A

96 20 Effective Address: $0020
STX $21 ; (X) — $0021:$0022

5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

97

0x0020 ™ 0x2000 0g A 17
73 20
X 3502
Al 5E
28 21
Fl

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 :$17 = A

B6 17 Effective Address: PC + 1
ADDA #10 ; (A)+$0A — A

8B 0A Effective Address: PC + 1

Effective address is the address following the op code

97

3502

0x1000 17 0x2000 86 A 21
35 17
X
02 8B
AR 0A
c7

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

The Indexed (IDX, IDX1, IDX2) addressing mode
Effective address is obtained from X or Y register (or SP or PC)

Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,.X- ; Post—decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X
INC 4,+X ; Pre—increment Indexed

; Add 4 to X

; then increment the number at address (X)
6223 Effective address: contents of X + 4

I -4
] &

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

Eﬁﬁéﬂ:iﬂ vale in X FeciStars

Exarple Aikboss Offsct After Done To Use
Constant Offset A n,X {3 +n 0 to FFEF &0 ¥ Y, 58, BC
Constant Offset IAA —n, X {(¥)—-n 0 to FFEF 0 ¥ Y, 58, BC
Postincranent LIAA m, X+ {0 lto 8 (X4 ¥ Y, S
Proancromert IDAA 1, +X {(X)+n lto 8 (X)+n X Y S
Postdecranent IMAA N, X x) lto8 (X)-n X Y 5P
Predecrament IAA N, —X {(X)-n lto 8 {(X}—-n X Y, =P
A Offsst ICEA B, X H+&) | 0toEF) X Y, S8, EC

IOAL B, X (X)+(B) | O toFF

IDAR D, X +D | 0 to FFEF

The data books list three different types of indexed modes:
* Table 4.2 of the Core Users Guide shows details

* IDX: One byte used to specify address
— Called the postbyte
— Tells which register to use
— Tells whether to use autoincrement or autodecrement
— Tells offset to use

* IDX1: Two bytes used to specify address
— First byte called the postbyte
— Second byte called the extension
— Postbyte tells which register to use, and sign of offset
— Extension tells size of offset

* IDX2: Three bytes used to specify address
— First byte called the postbyte
— Next two bytes called the extension
— Postbyte tells which register to use
— Extension tells size of offset

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

Table 3-1. M68HC12 Addressing Mode Summary

Addressing Mode Source Format | Abbreviation Description
INST
Inharant {no externally INH Operands (if any) are in CPU registars
supplied cperands)
Immediata IHST:FG'W& MM QOperand is i!‘lEl!JEl-E.d in _inslructic:-n straam
INST #0pr16i 8- or 16-bit size implied by contaxt
) Operand is the lower 8 bits of an address
Diract INST opr@a DIR in ha ranga 500 o0FF
Extended INST opriGa EXT Operand is a 16-bit address
Rolative INSL"E'IS REL An 8-bit or 16-bit relative ofiset from the current pe
INST ralis i supplied in the instruction
Indexad 5-bit signed constant ofisst
(5-bit affset) INST oprxs,xysp IDX from X, ¥, SP, or PC
Indexad
(pre-dacramant) INST oprx3—xys 10X Auto pre-decremeant x, y, orspby1 -2
Indexad)
pre-increment] INST oprx3+xys 10X Auto pre-increment x, v, orspby 1 -8
Indexad
(post-decrement) INST oprx3,xys— DX Auto post-decrement x, v, orspby 1 -8
Indexad -
{post-increment) INST oprx3,xys+ 10X Auto post-increment x, y, orspby 1 -8
Indexad Imdexed with 8-bit (A or B) or 16-bit (D)
{accumulator offzaf) INST abaxysp DX accumulator ofiset from X, ¥, 3P, or PC
Indexad 9-hit signed constant ofizat from X, Y, SP, or PC
(9-bit offset) INST opred,xysp D {lowar 8 bits of offset in ome extension byta)
Indexad 16-bit constant offsat from X, ¥, SP, or PC
{16-bit offsef) INST oprct G.xysp IDx2 {16-bit offset in two extension byles)
) Pointer to operand is found at...
"ﬁ;‘ﬁg;‘j‘:fi';f}“' INST [opreigayse] | [IDX2] 1&-bit constant offsat from X Y, SP, or BC
{16-bit offzef in two extension bytas)
Indexed-Indirect INST [D] [D.IDX] Pointer to operand is found at...

(D accumulator offsat)

X, Y, 8P, or PC plus the valug in D

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch
Treat the offset as a signed number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(BRA) 2035 PC +2 + 0035 — PC

(BRA) 20C7 PC +2 + FFC7 — PC
PC +2-0039 — PC

Long branch instruction: Two bytes following op code specifies how far to branch
Treat the offset as an unsigned number; add the offset to the address following the
current instruction to get the address of the instruction to branch to

(LBEQ) 1827 02 1A If Z==1then PC + 4 + 021A — PC
If Z==0then PC+4 — PC

When writing assembly language program, you don’t have to calculate offset
You indicate what address you want to go to, and the assembler calculates the offset

0x1020 BRA $1030 : Branch to instruction at address $1030

(2020 20 BC 2020 |

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Summary of HCS12 addressing modes

ADDRESSING MODES
Effective
Hame Example Op Code Address

INH Inherent ABA 18 0e& None

IMM Immediate LDAR #3535 86 35 PC + 1

DIER Direct LDAR 535 96 35 0x0035

EXT Extended LDAR 52035 BE6 20 35 0x2035

IDX Indexed LDAR 3, X A6 03 X+ 3

IDX1 LDAR 30,X A6 EO0O 13 X + 30

IDX2 LDAAR 300, X A6 E2 01 2C X + 300

IDX Indexed LDAR 3, X+ AG 32 X (X4+3 -> X)
Postincrement

IDX Indexed LDAA 3, 4+X A6 22| H+3 (X+3 - X)
Preincrement

IDX Indexed LDAA 3, X- A6 3D X (X-3 —> X)
Postdecrement

IDX Indexed LDAA 3, -X a6 2D ¥-3 (¥X-3 -> X)
Predecrement

REL Relative BRA 51050 20 23 PC + 2 + Offset

LERA S1FO00 18 20 0E CF PC + 4 + Offset

A few instructions have two effective addresses:

* MOVB $2000,$3000 ;move byte from address $2000 to $3000
* MOVW 0,X,0,Y ;move word from address pointed to by X to address
;pointed to by Y

