Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

e More on programming in assembly language
« Introduction to Ports on the HC12
o Input and Output Ports

= Simplified input port

= Simplified output port

= Simplified input/output port

= PORTA, PORTB, DDRA, DDRB

= A simple program to use PORTA and PORTB
Good programming style
Tips for writing programs
A program to average the numbers in a memory array
Flow charts
Assembly language program
Assembly listing file

O O O O O O

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Input and Output Ports

* How do you get data into a computer from the outside?

SIMPLIFIED INPUT PORT Any read from address $0000 gets signals from

outside
D
7 } LDAA $00
Dg / Puts data from outside into accumulator A.
_"|\) 5
D ; Data from outside looks like a memory
5 location.

H
: I
2 Dy / E:
: N ,,
P R
a m '
L 0 =I
n D2 S £
g i A Tri-State Buffer acts like a switch

D1 d

i"\ € If TRI is not active, the switch is open: OUT
will not be drived by IN
Do : Some other device can drive OUT

Pead from | I ey ™
(0000

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

* How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT

7
Dg
D
q 5
C
1
2 Dy
D
=1
t D
a 3
L
i D
a 2
2
5
Dy
Dg
Write to

Ox0001

b QO——o

TRFRTSO O0H bBHWPDIOHEW

Any write to address $01 latches data into
FF, so data goes to external pins

MOYVB #$AA,$01

Puts $AA on the external pins

When a port is configured as output and
you read from that port, the data you read
is the data which was written to that port:

MOVB #$AA, $01
LDAA $01

Accumulator A will have $AA after this

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Most I/O ports on MC9S12 can be configured as either input or output

SIMPLIFIED INPUT/OUTPUT PORT

|
o

Read from Address 0x0000
]'.'l.I|I D @ I/‘ P‘AT
Write to Address 0x0000 DDRA

e A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

e [f Bit 7 of DDRA is 0, the port is an input port. Data written to FF does not get to
pin though tri-state buffer

e [f Bit 7 of DDRA is 1, the port is an output port. Data written to flip-flop does get
to pin though tri-state buffer

e DDRA (Data Direction Register A) is located at 0x0002

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Figure 1-1 MC9512DT256 Block Diagram

YRAH [— YRH |=—%RH
o
| Z2EEK Byts Flash EEPROM | ATOIO VEL ATD1 VAL |=—vRAL
WODA |- VDDA [=—VDDA
| 12K Byts RAK | VSEA |-— VSSA |=-—VESA
AN ——PACD ANO [|=—PaDDS
| 4K Byt EEPRCIM | ANA ~— P& D0 AN |- ~=— PADIOG
AN2 ~—PADOZ | ANZ |=— [=—paDd0
VDDR— ANZ g [=—PraDoz AN [=— = |=—PAD11
WESR—= AN4 T, |-—PADOd AN |- T [-—PAD12
VREGEN—= Voltags Regulator ANG =—PALOE ANG |=— |-=—PAD13
VDD 2 - ANE — PA DO ANG |- --— PAD14
WEE] 2 -] ANT -— PADOT ANT |- -— PADTS
D e STl Bmkgmu‘nd PN || = PKO | XADOATS)
A= Debug Medue CPUZ PPAGE PI1 [== PK1 ! XADDR1S!
— PIXZ [32 | == PKZ | XADDR1E,
WODPLL = Clok and P ({5 E Rt o : MDDFH?:
- PLL Rieszl Fartodis Interm P4 == O == PK4 | KADDRIE,
VESPLL Ganeration Et PINE | == PKS | XADDR1S,
EXTAL—= Mele COP Watchdog ECS | == PKT ! ELS !
NTAL =] Clozk Monitar L .
RESET =+ Ereakpoints ICHC0 === PT0O
1CaZ s == PT1
FEQ boil=]
PEI—» B ICC2 e | [PT2
PEZ s e B Systam Enhanced Capture el l': - PTA
w | —_— Integration Timer 10C4 | H (o (- pPT4
PEZ wi i |==| LSTHE
o Module WCE [| FTE
PE4==f- 5 [*=| BCLK (SIM) 10 | - PTE
PES == | MODA e e
PEE =+ a| MODE = -
PET == |ee| MDAC TR sC10 RAD || - P
TED = === PS5
TEST—=
= e RAD [, | [==Ps2
EEREEEE I EREE R D0l |0 leps
. MISD |- - L [== P24 o
1 &
Multiplewed Address Tiata Bus <Pl MoS] | - _ s pas5 E
FRiiitdd 1ibgtiid ol e e [e
AR EE N =
EOLC RxE |=—] 'z
(J1850) e |—=| o] = PR §
=
Tl £ | e
trd T EEEZIBHEE = |- o
& E Eg Lobbiolaoo)Gﬁ.N1 REGAN |=— = |E [==FM2 Ll
[s ey = o B THCAN [—= & -H-gn_-o-n-pr,u g
Cogroocod CORGCREREDR -] -+ FME g
COQoOOoOO00 COOOOCOOoOo L @
CoOQpOoO00 QoOoOoOCoooo @ e == PN n
s tEmTEErT mIETETEs = <-Pu7T 3
1 . W o= o 0o o
Multiplexed ir & T & 7 & & = c
i M L T L L er L E
1\ Wids Bus EEE‘EEEEE c
| QOO0 G0do 0 _E
b o e m e mmmmemC ol __
i - KW =] == PJi H
|Muhiplmadrﬁggﬁggﬁg WA "E 2 [==Pn T
(Marrcw Bus i 3 B8 £ 8 % 3 . bWl || D [[pus a2
R R - S0L KWIT | - PJT
Intemal Logic 2.5V I'Cr Corivear BV T e [T -
yoolz = VOOX —- PWMI |f—am| WP [= PP
VES12 VSEX
- o] - P2
L -1 PUiME KWP2 o PP2
- - PV PRS- —a| KWP3 (e T & == PF3
AD Converter 5V & Pt || Py | 8 B |==pPa
FLL 2.8V Valtage Ragulator Rsferance PwiME || nps el e
WDODPLL — VDDA —= PG [| KWWPE [== PPS
VESPLL —_| VESA PWMT KWP7T |== == PP7
= = MIS0 e[KWHD == == PHD
MO [t KWHT [== FH1
Voltage Regulator BV & 11D SPH
u%l:un g_. SOH | KWHZ |m| < == PH2
WEER S5 [KWHS [o - PHI
1 TS0 (| KWHA (el O | B |e PHa
SPI2 MACES] || FOHEG [== PHS
SCK [KWHE [<+ FHA
TH || KWHT || == PHT

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Ports on the HC12

* How do you get data out of computer to the outside?

* A Port on the HC12 is a device that the HC12 uses to control some hardware.

* Many of the HC12 ports are used to communicate with hardware outside of the HC12.

* The HC12 ports are accessed by the HC12 by reading and writing memory locations
$0000 to $03FF.

* Some of the ports we will use in this course are PORTA, PORTB, PTJ and PTP:

* PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

* PORTB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

* PTJ is accessed by reading and writing address $0268.
- DDRIJ is accessed by reading and writing address $026A.

* PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

* On the DRAGON12-Plus EVB, eight LEDs and four seven-segment
LEDs are connected to PTB.

-Before you can use the eight individual LEDs or the seven-segment LEDs, you
need to enable them.

- Bit 1 of PTJ must be low to enable the eight individual LEDs

- Bits 3-0 of PTP are used to enable the four seven-segment LEDs
* A low PTPO enables the left-most (Digit 3) seven-segment LED
* A low PTP1 enables the second from the left (Digit 2) seven-segment
LED
* A low PTP2 enables the third from the left (Digit 1) seven-segment LED
* A low PTP3 enables the right-most (Digit 0) seven-segment LED

— To use the eight individual LEDs and turn off the seven-segment LEDs, write
ones to Bits 3-0 of PTP:

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

BSET #$0F,DDRP ; Make PTP3 through PTPO outputs
BSET #$0F,PTP ; Turn off seven-segment LEDs

* On the DRAGON12-Plus EVB, the LCD display is connected to PTK

* When you power up or reset the HC12, PORTA, PORTB, PTJ and PTP are input ports.

* You can make any or all bits of PORTA, PORTB PTP and PTJ outputs by writing a 1 to
the corresponding bits of their Data Direction Registers.

— You can use DBug-12 to manipulate the IO ports on the 68HCS12
* To make PTB an output, use MM to change the contents of address
$0003 (DDRB) to an $FF.

* You can now use MM to change contents of address $0001 (PORTB),
which changes the logic levels on the PORTB pins.

* If the data direction register makes the port an input, you can use MD to
display the values on the external pins.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the corresponding bit of DDRA
(address 0x0002).

To make a bit of Port A an input port, write a 0 to the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port.

DDRA7 | DDRA6 | DDRAS | DDRA4 | DDRA3 | DDRA2 | DDRA1 DDRAO
Reset 0 0 0 0 0 0 0 0 $0002

For example, to make bits 7—4 output and bits 3—0 of Port A input, write a OxFO0 to
DDRA.

To send data to the output pins, write to PORTA (address 0x0000). When you read from
PORTA input pins will return the value of the signals on them (0 = 0V, 1 = 5V); output
pins will return the value written to them.

PA7 PA6 PAS PA4 PA3 PA2 PA1l PAO
Reset - - - - - - - - $0000

Port B works the same, except DDRB is at address 0x0003 and PORTB is at address
0x0001.

;A simple program to make PORTA output and PORTB input, then read the
; signals on PORTB and write these values out to PORTA

prog: equ $1000
PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03
org prog

movb #$ff,DDRA : Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

* Because DDRA and DDRB are in consecutive address locations, you could make
PORTA and output and PORTB and input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

GOOD PROGRAMMING STYLE
1. Make programs easy to read and understand.
* Use comments
* Do not use tricks
2. Make programs easy to modify
* Top-down design
* Structured programming — no spaghetti code
* Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.
* Draw a picture

2. Think about how to process data

e Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to individual instructions

* Top-down design

4. Use names instead of numbers

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Another Example of an Assembly Language Program
* Find the average of the numbers in an array of data.
* The numbers are 8-bit unsigned numbers.

* The address of the first number is $E000 and the address of the final number is $EO1F.
There are 32 numbers.

* Save the result in a variable called answer at address $2000.
Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0XEO000 TO O0XEO1F
Treat numbers as 8—bit unsigned numbers

0xE000

QN[O | = |tn |

p—
p—

O0xEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Start with the big picture

0xE000

QN[O | = ||

p—
p—

OxEO1F

Add details to blocks

0xE000

QN[O | = ||

p—
p—

OxEO1F

Electrical Engineering EE 308 Spring 2011
pring

New Mexico Institute of Mining and Technology

Decide on how to use CPU registers for processing data

Find average of 8-bit numbers in array from OxE000 to OxEO1f

Sum: 16-bit register
Canuse DorY

No way to add 8—bit number to D
Can use ABY to add 8-bit numberto Y

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Add more details: Expand another block

Process
START Init Entries
——

X= 4 0xE000
loop:
5
I Ini 1
8
6
Entries

Done

OxEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

More details: How to tell if number is odd, how to tell when done

How to check if more to do?
If X < 0xE020, more to do.

BLT or BLO?
Addresses are unsigned, so BLO

How to find average? Divide by LEN
To divide, use IDIV
TFR Y,D ; divide in D
LDX #LEN ; divisorin X
IDIV

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 1 1

Convert blocks to assembly code

0xE000

&
=
AN |[—=|n| B~

8

dFX #ARBAY END
BLO loop

O0xEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 201 1

Write program
;Program to average 32 numbers in a memory array

prog: equ $1000
data: equ $2000

array: equ $E000
len: equ $32

org prog
1dx #array ; initialize pointer
Idy #0 ;> initialize sum to 0
loop: ldab 0, ; get number
aby s odd - add to sum
inx ; point to next entry
cpx #(array+len) ; more to process?
blo loop ; if so, process
tfr y,d : to divide, need dividend in D
idx #len : to divide, need divisor in X
idiv ; D/X quotient in x, remainder in D
stx answer ; done — save answer
swi
org data
answer: ds.w 1 ; reserve 16-bit word for answer

e Important: Comment program so it is easy to understand.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2011

The assembler output for the above program

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code
1 1

2 2

3 3 0000 2000

4 4 0000 1000

5 5

6 6 0000 E000

7 7 0000 0020

8 8

9 9

10 10

11 11 2002000 CEEO0 00
12 12 2002003 CDO00 00
13 13 2002006 E600

14 14 2002008 19ED

15 15 a00200A 08

16 16 a00200B 8EEO 20
17 17 a00200E 25F6

18 18

19 19 2002010 B764

20 20 2002012 CE00 20
21 21 a002015 1810
22 22 2002017 7E10 00
23 23 a00201A 3F

24 24

25 25

26 26 2001000

28 28

Here is the .s19 file:

Source line

;Program to average 32 numbers in a memory array

prog:
data:

array:

len:

answer: ds.w 1

equ $2000

equ $1000

equ $E000

equ 32

org prog

1dx #array ; initialize pointer
1dy #0 ; initialize sum to O
loop: Idab 0,x ; get number

aby ; odd - add to sum
inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

tfr y,d ; To divide, need dividend

1dx #len ; To divide, need divisor

idiv ; D/X quotient in X, remainder
stx answer ; done -- save answer

SWi

org data

; reserve 16-bit word for 27 27

S11E2000CEE000CDO0000E60019EDOSSEE02025F6B764CE002018107E10003FAB

S9030000FC

