
EE 308 Spring 2013

EE 308 – Homework 4

1. Suppose you started with the following register contents:

PC=200A Y=34B1 X=826F A=90 B=C2 SP=1C06

What address will be in the stack pointer, what values will be in the registers (A, B, X, Y,
SP and PC), and exactly what is in the stack after the following instructions sequence is
executed:

INST. A B X Y SP PC

PSHB
PSHA
PSHY
PULX
JSR $2270

 $90 $C2 $826F $34B1 $1C06 $2009

2. Below are some data in the MC9S12 memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F

1000 41 05 C3 12 15 B2 AA 79 C3 D6 8A F1 91 43 0A B9

1010 63 13 96 14 6B 24 80 C1 B1 1F 26 1A 31 83 DA 11

1020 10 1D B2 61 91 09 A1 BB 67 11 78 11 4C 01 C8 95

Indicate the values in the registers after the MC9S12 executes the following instructions. Also
write down the number of cycles needed to execute each instruction. Show what will be in the
registers (in hex) after each of the instructions. If the instruction does not change a register,
you may leave that entry blank. Note that the first instruction is located at address 0x2000.

Inst. A B X Y SP N Z V C Addr. Mode Eff. Address Cycles

A0 0B 101C 1020 0200 1 0 1 0

lds #$1020

cpd $100C

puly

adda 5,-y

EE 308 Spring 2013

3. Write a subroutine to display a counting pattern on PORTB, and return the next number
(the number passed to the subroutine plus 1). The number to display is passed in accumulator
A. Store this number into PORTB and return the next pattern in the sequence in accumulator
A. The subroutine should return with all registers expect A the same as when the subroutine
was called, so use the stack to save and restore any registers you need to use to implement
the subroutine.

4. Write a subroutine to generate the next pattern in the sequence for an eight-bit Johnson
counter. The procedure to do this is as follows: Shift the present pattern to the right by one
bit. The most significant bit of the next pattern is the inverse of the least significant bit of
the present pattern. The number to convert is in accumulator A, and the next pattern in
the sequence is returned in accumulator A. The subroutine should return with all registers
expect A the same as when the subroutine was called, so use the stack to save and restore
any registers you need to use to implement the subroutine.

5. Write a subroutine to take the next entry out of a table, write it to PORTB, and update the
index into the table. Here is an example of what the table might look like:

table_len: equ (table_end-table)

org data

table: dc.b $00, $01, $02, $04, $08, $10, $20, $40, $80
table_end:

The index of the number to be displayed is passed in accumulator A. Your code should write
the table entry corresponding to that index to PORTB. Return the index to the next table
element in accumulator A. (For example, if accumulator A were 5, you would write the fifth
element of the table, $10, to PORTB, and return a 6.) Make sure that the index stays between
0 and table_len - 1. The subroutine should return with all registers expect A the same as
when the subroutine was called, so use the stack to save and restore any registers you need
to use to implement the subroutine.
The pattern to display is shown below:

EE 308 Spring 2013

6. Write the program for Part 3 of Lab 2. The program will display three different patterns
on the LED display connected to Port B. You will use the state of bits 1 and 0 of the onboard
DIP switch to select which of the four patterns to display. Write a program to set up Port B as an
eight bit output port (be sure to disable the seven-segment displays, and to enable the individual
LEDs), and to implement (i) a binary up counter, (ii) a Johnson Counter, (iii) a Ford Thunderbird
style turn signal based on the state of the DIP switches. (These are the three subroutines from
Problems 3 to 5.) Insert a 100 ms delay between updates of the display. Write the delay as a
subroutine. Be sure to initialize the stack pointer in you program.
Use variables to hold information on the three patterns. (You will need one variable for the
binary and Johnson counter patterns, and one variable to hold the sequence number for the TBird
Taillight pattern.) Initialize these three variables to the first pattern in the sequence.
You should have a loop which checks the DIP switches connected to Port H. If bit 7 of the DIP
switches is high, end the loop and exit back to DBug-12 with a SWI instruction. If bit 7 of the
DIP switches is low, check bits 0 and 1 to determine what pattern to display:

PH1 PH0 Pattern

0 0 Binary Up Counter

0 1 Johnson Counter

1 0 Tbird Turn Signal

For example, if bits 1 and 0 of Port H are 10, load accumulator A with the Johnson Counter
variable, call the Johnson Counter subroutine, and save the returned accumulator A into
the Johnson Counter variable. Call the Delay subroutine, then loop back to check the DIP
switches again.

