
EE 308 Spring 2013

Review for Test 1

You may use any of the handouts from the Freescale data books, and one
page of notes. No calculators allowed.

Programing Model

• Registers A and B are part of the programming model. Some instructions treat A and B
as a sixteen-bit register called D for such things as adding two sixteen-bit numbers.

• The MC9S12 has a sixteen-bit register which tells the control unit which instruction to
execute. This is called the Program Counter (PC). The number in PC is the address of
the next instruction the MC9S12 will execute.

• The MC9S12 has an eight-bit register which tells the MC9S12 about the state of the
ALU. This register is called the Condition Code Register (CCR). One bit (C) tells the
MC9S12 whether the last instruction executed generated a carry. Another bit (Z) tells the
MC9S12 whether the result of the last instruction was zero. The (N) bit tells whether the
last instruction executed generated a negative result.

• Registers X and Y are 16-bit registers and are used mostly for indexing arrays. SP are
a register used to point to the stack, and PC is the register that holds the program counter.
part of the programming model.

EE 308 Spring 2013

Binary Hex Decimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Convert Binary to Decimal

1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

Convert Hex to Decimal
82D6 16

8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
3349410

EE 308 Spring 2013

A Simple Assembly Language Program

prog: equ $2000 ; Start program at 0x2000
data: equ $1000 ; Data value at 0x1000

org prog
ldaa input
inca
staa result
swi

org data ; Start of data
input: dc.b $A2
result: ds.b 1

Assembling an Assembly Language Program

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at 0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

EE 308 Spring 2013

The MC9S12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to access

Effective address:
Memory address used by instruction

Addressing mode:
How the MC9S12 calculates the effective address

MC9S12 ADDRESSING MODES:

INH Inherent:

Instructions which work only with registers inside ALU

IMM Immediate:

Value to be used is a part of the instruction

DIR Direct:

Instructions which give 8 LSB of address

EXT Extended:

Instructions which give the 16-bit address to be accessed

REL Relative (used only with branch instructions):

The relative addressing mode is used only in branch and long branch
instructions

IDX Indexed:

Effective address is obtained from X or Y register (or SP or PC)

EE 308 Spring 2013

Summary of HCS12 addressing modes

EE 308 Spring 2013

Hand Assembling a Program

To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go
into memory (e.g., org $2000 will put the first instruction at address $2000.)

2. Look at the first instruction. Determine the addressing mode used.
(e.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the MC9S12 S12CPUV2 Reference Manual, find the
appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., ldab
IMM has object code C6 ii.)

• Table A.1 of S12CPUV2 Reference Manual has a concise summary of the
instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful
to convert decimal operands to hex operands if necessary. (e.g., ldab #10 becomes C6
0A.)

5. Add the number of bytes of this instruction to the address of the instruction to
determine the address of the next instruction (e.g., $2000 + 2 = $2002 will be the starting
address of the next instruction.)

 org $2000
 ldab #10
loop: clra
 dbne b,loop
 swi

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1
 2 2 0000 2000 prog: equ $2000
 3 3 org prog
 4 4 a002000 C60A ldab #10
 5 5 a002002 87 loop: clra
 6 6 a002003 0431 FC dbne b,loop
 7 7 a002006 3F swi

EE 308 Spring 2013

MC9S12 Cycles

• 68HC12 works on 48 MHz clock

• Each processor cycle takes 41.7 ns (1/24 MHz) to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles
for that instruction in the S12CPUV2 Core Users Guide.

– For example, LDAA using the IMM addressing mode shows one CPU cycle.

– LDAA using the EXT addressing mode shows three CPU cycles.

2000 org $2000 ; Inst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,loop ; DBNE (REL) 3
2006 3F swi ; SWI 9

Total number of cycles:

1 + 10 × (1 + 3) + 9 = 50
50 cycles = 50 × 41.7 ns/cycle = 2.08 μs

EE 308 Spring 2013

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use

ldx #table NOT ldx table

• For example, the following loads the address of table ($1000) into X; i.e., X will point
to table:

ldx #table ; Address of table ⇒ X

The following puts the first two bytes of table ($0C7A) into X. X will not point to table:

ldx table ; First two bytes of table ⇒ X

• To step through table, need to increment pointer after use

ldaa 0,x
inx

OR

ldaa 1,x+

EE 308 Spring 2013

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert HC12 op codes into mnemonics.

For example, consider the hex code:

ADDR DATA

1000 C6 05 CE 20 00 E6 01 18 06 04 35 EE 3F

• To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.

– Use Sheet 1 & 2 of Table A.2.

- Use Table A3. For Indexed addressing mode.

- Use Table A.6 for loop instructions to determine whether the branch is positive
(forward) or negative (backward).

C6 05 ⇒ LDAB #$05 LDAB, IMM addressing mode

CE 20 00 ⇒ LDX #$2000 LDX, IMM addressing mode

E6 01 ⇒ LDAB 1,X LDAB, IDX addressing mode

18 06 ⇒ ABA ABA, INH addressing mode

04 35 EE ⇒ DBNE X,(-18) DBNE X,negative branch

3F ⇒ SWI SWI, INH addressing mode

EE 308 Spring 2013

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 0−7), then the number is
positive.

Example for 8−bit number:
3A 16 −> + (3 x 161 + 10 x 160) 10
 + (3 x 16 + 10 x 1) 10
 + 58 10

If the most significant bit is 1 (most significant hex digit 8−F), then the number is negative.

Example for 8−bit number:
A316 −> - (5D) 16

 - (5 x 161 + 13 x 160) 10
 - (5 x 16 + 13 x 1) 10
 - 93 10

One’s complement table makes it simple to finding 2’s complements

EE 308 Spring 2013

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or
N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0
Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is greater than the minuend

V bit set when N - P = P or
 P - N = N

N bit set when MSB is 1

Z bit set when result is 0

EE 308 Spring 2013

Input and Output Ports

• Most I/O ports on MC9S12 can be configured as either input or output

• PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

• PORTB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

• PTJ is accessed by reading and writing address $0268.
- DDRJ is accessed by reading and writing address $026A.

• PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

• On the Dragon12, eight LEDs and four seven-segment LEDs are connected to PORTB

EE 308 Spring 2013

;A simple program to make PORTA output and PORTB
; input, then read the signals on PORTB and write these
; values out to PORTA

prog: equ $2000

PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03

org prog
movb #$ff,DDRA ; Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

EE 308 Spring 2013

The Stack and the Stack Pointer

• When we use subroutines and interrupts it will be essential to have the storage region
the Stack.

• The Stack Pointer (SP) register is used to indicate the location of the last item put onto
the stack.

• When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

• When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

• Before you can use a stack you have to initialize the Stack Pointer to point to one
value higher than the highest memory location in the stack. Use LDS to initialize the
stack pointer.

Subroutines

• A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

• When you call a subroutine, your code saves the address where the subroutine should
return to. It does this by saving the return address on the stack.

- This is done automatically for you when you get to the subroutine by using the
JSR (Jump to Subroutine) or BSR (Branch to Subroutine) instruction. This
instruction pushes the address of the instruction following the JSR/BSR
instruction on the stack.

- After the subroutine is done executing its code it needs to return to the address
saved on the stack when RTS is used.

