Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Interrupts
The Real Time Interrupt

Interrupt vectors for the 68HC912B32

* The interrupt vectors for the MC9S12DP256 are located in
memory from O0xFF80 to OXFFFF.

* These vectors are programmed into Flash EEPROM and are very
difficult to change

» DBug12 redirects the interrupts to a region of RAM where they
are easy to change

* For example, when the MC9S12 gets a TOF interrupt:
— It loads the PC with the contents of OxFFDE and 0xFFDF.

— The program at that address tells the MC9S12 to look at
address 0x3E5E and 0x3ESF.

— If there is a 0x0000 at these two addresses, DBug12 gives
an error stating that the interrupt vector is uninitialized.

— If there is anything else at these two addresses, DBug12
loads this data into the PC and executes the routine located
there.

Electrical Engineering EE 308 Spring 2014
pring

New Mexico Institute of Mining and Technology

— To use the TOF interrupt you need to put the address of
your TOF ISR at addresses 0x3ESE and 0x3ESF.

* The location of the vectors is defined in the include files so you
don’t have to remember them or look them up in the reference

manual.

For assembly program, the vectors are defined in the
hcs12.inc

UserTimerOvf equ $3E5E

For C programs, the vectors are defined in the file
vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to Ox3ESE */

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Commonly Used Interrupt Vectors for the MC9S12DP256

Interrupt Specific General | Normal DBung-12
Mask Mask Vector Vector
BP1Z SFICH1 (SPIE, SPILE) I FFOC, FFED | 3E3C, JEAD
EFI1 ZFICRL (3PIE, SPTIE) I FFHE, FFOF | 3E3E, 3E3F
IIC IBCR (IBIR) I FFCO, FFC1 | 3E40, 3E41
BOLC DLCBCR (IE) I FFCZ, FFC3 | 3E42, 3E43
CEG Self Clock Mode CRGINT (SCMIE) I FFC4, FFCH | 3E44, 3E4E
CRG Lock CRGINT (LOCEKIE) I FFCE, FFCT | 3E46, 3EAT
Fulse Acc B Owverflow FECTL (FBOVI] I FFC3, FFCO | 3E48, 3E49
Hod Down Ctr UnderFlow MOCTL (MCII) I FFCA, FFCH | 3E4A, 3E4H
Fort H PFTHIF (PTHIE) I FFCC, FFCD | 3EAC, 3E4D
Fort J PTJIF (PTJIE]) I FFCE, FFCF | 3E4E, 3E4F
ATD1 ATDICTL2 (ASCIE) I FFDOQ, FFD IEE0, 3JEE1
ATDO ATDCTLZ (ASCIE) I FFO2Z, FFD3 | 352, 3EGR3
BCI1 BCICH2 I FFDM, FFDE | 3E54, 3EEG
{TIE, TCIE, RIE, ILIE)
SCIO SD0CHR2 I FFDE, FFDT | 3E56, 3EGT
(TIE, TCIE, RIE, ILIE)
SFIN SPRCR1 (SPIE] I FFod, FFD JE53, 3JEEBS
Fulese Acc A Edge PACTL (FAI) I FFDA, FFDE | 3E5A, 3EGH
Fulse Acc A ODwverflow FACTL {FPAOVI] I FFDC, FFODD | 3E5C, 3EGD
Enk Capt Timer Dwerflow TECR2 (TOI) I FFDE, FFO¥ | 3EEE, 3JEEF
ap 1mET annel | LILE qrl) 1 FFELD, FFEL | SEGL, JEGL
Ech Capt Timer Channel & | TIE {DEI) I FFE2, FFE JEE2, 3JEE3
Ech Capt Timer Channel & | TIE {(CBI) I FFE4, FFES | 3E64, 3EG5
Enh Capt Timer Channel & | TIE {(CAI) I FFEG, FFET | 3B86, 3EET
Enhk Capt Timer Channel 3 | TIE {C3I) I FFEZ, FFES | 3EE3, JEES
Enk Capt Timer Channel 2 | TIE (CZI) I FFEL, FFE JEGA, 3EGB
Ech Capt Timer Channel 1 | TIE {C1I) I FFEC, FFED | 3ESC, 3EGD
Ech Capt Timer Channel 0 | TIE {ODI) I FFEE, FFEF | 3EGE, 3EGF
Eeal Time CRGINT (HTIE) I FFFQ, FFF1 | 3E70, 3ET1
TRQ IRQCR (IRGQEN) I FFF2, FFF3 | 3Er2, 3ET3
IIEQ {None) X FFFF, FFFF | 3ET4, 3ETG
W1 {None) {Noo=) FFFG, FFFT | 3ETE, JETT
UInimplemented Instruction | (None) (Non=] FFFa, FFF9 | 3E78, 3ETI
COF Failure COPCTL {None) FFFA, FFF JETR, 3JETH
{CR2-CRD COF Rate Select)
COP Clock Momiotr Fail PLLCTL (CME, SCME) {Non=) FFFC, FFFD | 3E7C, 3ETD
BEemet {(Mone) {Hone=) FFFE, FFFF | ZETE, 3ETF

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Exceptions on the MC9S12

 Exceptions are the way a processor responds to things other than
the normal sequence of instructions in memory.

 Exceptions consist of such things as Reset and Interrupts.

* Interrupts allow a processor to respond to an event without
constantly polling to see whether the event has occurred.

* On the HCS12 some interrupts cannot be masked — these are the
Unimplemented Instruction Trap and the Software Interrupt (SWI
instruction).

* XIRQ interrupt is masked with the X bit of the Condition Code
Register. Once the X bit is cleared to enable the XIRQ interrupt, it
cannot be set to disable it.

— The XIRQ interrupt is for external events such as power
failure which must be responded to.

* The rest of the HCS12 interrupts are masked with the I bit of
the CCR.

— All these other interrupts are also masked with a specific
interrupt mask.

— This allows you to enable any of these other interrupts you
want.

— The I bit can be set to 1 to disable all of these interrupts if
needed.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

The Real Time Interrupt

* Like the Timer Overflow Interrupt, the Real Time Interrupt
allows you to interrupt the processor at a regular interval.

* Information on the Real Time Interrupt is in the CRG Block
User Guide.

* There are two clock sources for MC9S12 hardware.

— Some hardware uses the Oscillator Clock. The RTI system

uses this clock.
* For our MC9S12, the oscillator clock is 8 MHz.

— Some hardware uses the Bus Clock. The Timer system
(including the Timer Overflow Interrupt) use this clock.
* For our MC9S12, the bus clock is 24 MHz.

Vo

| RTIF
v} OQF——®— paoad

| = - cem 18
OSC Clock ——| = EW = 12481832 84 = 1,234 -

2 MHz . RTR &:4 (RTICTL) RTR 3:0{RTICTL]

RTIF
Wi
CRGFLG

e an =
CAGINT cCR

Electrical Engineering EE 308 Spring 2014
prin

New Mexico Institute of Mining and Technology

* The specific interrupt mask for the Real Time Interrupt is the
RTIE bit of the CRGINT register.

* When the Real Time Interrupt occurs, the RTIF bit of the
CRGFLG register is set.

To clear the Real Time Interrupt write a 1 to the RTIF bit of
the CRGFLG register.

* The interrupt rate is set by the RTR 6:4 and RTR 3:0 bits of the
RTICTL register. The RTR 6:4 bits are the Prescale Rate Select
bits for the RTI, and the RTR 2:0 bits are the Modulus Counter
Select bits to provide additional granularity.

ETIF ECHF 0 LOCETE| LOTK TRACE | SOMIF oM 0x0037 CRFILG

ETIE 0 0 LOCKIE 0 0 SMIE 0 D038 CRGINT

EIRE RIRS FIR4 | RIR3 FIRZ FIFl | FIRD (03B RITCTL

* To use the Real Time Interrupt, set the rate by writing to the RTR
6:4 and the RTR 3:0 bits of the RTICTL, and enable the interrupt
by setting the RTIE bit of the CRGINT register

— In the Real Time Interrupt ISR, you need to clear the RTIF
flag by writing a 1 to the RTIF bit of the CRGFLG register.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

» The following table shows all possible values, in ms, selectable
by the RTICTL register (assuming the system uses a 8 MHz

oscillator):

RTR 3:0 RTR 6:4

000 [o001| o010] o011 100 101 110 111

(0) (1) (2) (3) (4) (b) (6) (7)
0000 (O) || Off [0.128 [0.256 | 0.512 | 1.024| 2.048| 4.096| 8.192
0001 (1) Jf 0ff [0.256 [0.512 | 1.204| 2.048| 4.096| 8.192| 16.384
0010 (2) || Off [0.384 | 0.768 | 1.636 | 3.072| 6.144|12.288 | 24.576
0011 (3) || 0ff [0.512(1.024|2.048| 4.006| B8.192| 16.384| 32.768
0100 (4) || Off [0.640 | 1.280 | 2.560 | 5.120 | 10.240 | 20.480 | 40.960
0101 (5) || Off [0.768 | 1.536 | 3.072 | 6.144| 12.288 | 24.570 | 49.1E2
0110 (6) || 0ff [0.896 | 1.792 | 3.684 | 7.168| 14.336| 28.672 | 57.344
0111 (T || Off [1.024 | 2.048 | 4.096 | 5.192 | 16.384 | 32.768 | 65.536
1000 (8) | 0ff [1.152|2.304 [4.608 | 9.216 | 18.432 | 36.864 | 73.728
1001 (9) || Off | 1.280 | 2.560 | 5.120 | 10.240 | 20.480 | 40.960 | 81.920
1010 (A) |/ 0ff [1.408]|2.816 | 5.632 | 11.264 | 22.528 | 45.066 | 90.112
1011 (B) |/ Off [1.536 | 3.072| 6.144 | 12.288 | 24.576 | 49.152 | 98.304
1100 (C) |/ 0ff [1.664 | 3.328 | 6.656 | 13.312 | 26.624 | £3.248 | 106.496
1101 (D) || 0ff [1.729 | 3.684 | 7.168 | 14.336 | 28.672 | £57.344 | 114.688
1110 (E) || Off | 1.920 | 3.840 | 7.680 | 15.360 | 30.720 | 61.440 | 122.880
1111 (F) || 0ff [2.048 [4.006 | 8.192 | 16.384 | 32.768 | 65.536 | 131.072

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

* Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h" /* DBug12 RAM-based interrupt */
/* vectors */

#define enable() _ _asm(cli)

#define disable() _ _asm(sei)

interrupt void rti_isr(void);

void main(void)
{
disable();

DDRB = 0xff;
PORTB = 0;

RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;

enable();
while (1)
{

_ _asm(wai); /* Do nothing -- wait for interrupt */

}

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

interrupt void rti_isr(void)

{
PORTB = PORTB + 1;
CRGFLG = 0x80;

To display a 16 bit number on the four 7-segment LEDs, you need
to display each 4-bit nibble sequentially. e.g., to display the
number 0x1234, you will first have to display the “1” on the left-
most 7-segment LED (turning on segments b and c) for a few
milliseconds, then display the “2” on the next 7-segment LED for a
few ms, then the “3”, and finally the “4”.

An easy way to do this is to do it inside an RTI interrupt service
routine. Use a static variable to keep track of which nibble to
display. The following RTTI interrupt service routine displays a
global 16-bit variable called value on the seven-segment display.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

interrupt void rti_isr(void)
{
static unsigned char nibble=0;
/* Array to convert nibble to segments to turn on. For example, 0 is
displayed with segments a, b, ¢, d, e, and f, or 0011 1111
gfe dcba
*/

const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,
0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
0x58, 0x5e, 0x79, 0x71};

switch (nibble) {
case 0: PTP = 0x0E; / * Enable the left-most display 1110 */

PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>12)&0x0F];
break;
case 1: PTP = 0x0D; /* Enable the next display 1101 */
PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>8)&0x0F];
break;
case 2: PTP = 0x0B;/ * Enable the next display 1011 */
PTJ |= 0x02;
PORTB = hex2seven_seg[(value>>4)&0x0F];
break;
case 3: PTP = 0x07; /* Enable right-most display 0111 */
PTJ |= 0x02;
PORTB = hex2seven_seg[(value)&0x0F];
break;
}
nibble = (nibble + 1) % 4;
CRGFLG = 0x80; /* Clear the RTI flag */

Electrical Engineering EE 308 Spring 2014
prin

New Mexico Institute of Mining and Technology

* You cannot pass a value to an interrupt service routine, so any
variable from another part of the program used by the ISR must be

declared as global.

* You cannot pass a value out of an ISR, so if another part of the
program needs a value determined inside an ISR, you must use a
global variable. It must also be declared as volatile so the
compiler knows that its value may change outside the regular
program flow.

