
EE 308 Spring 2014

• Interrupts
• The Real Time Interrupt

Interrupt vectors for the 68HC912B32

• The interrupt vectors for the MC9S12DP256 are located in
memory from 0xFF80 to 0xFFFF.

• These vectors are programmed into Flash EEPROM and are very
difficult to change

• DBug12 redirects the interrupts to a region of RAM where they
are easy to change

• For example, when the MC9S12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the MC9S12 to look at
address 0x3E5E and 0x3E5F.

– If there is a 0x0000 at these two addresses, DBug12 gives
an error stating that the interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12
loads this data into the PC and executes the routine located
there.

EE 308 Spring 2014

– To use the TOF interrupt you need to put the address of
your TOF ISR at addresses 0x3E5E and 0x3E5F.

• The location of the vectors is defined in the include files so you
don’t have to remember them or look them up in the reference
manual.

- For assembly program, the vectors are defined in the
hcs12.inc

UserTimerOvf equ $3E5E

- For C programs, the vectors are defined in the file
vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */

EE 308 Spring 2014

Commonly Used Interrupt Vectors for the MC9S12DP256

EE 308 Spring 2014

Exceptions on the MC9S12

• Exceptions are the way a processor responds to things other than
the normal sequence of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without
constantly polling to see whether the event has occurred.

• On the HCS12 some interrupts cannot be masked — these are the
Unimplemented Instruction Trap and the Software Interrupt (SWI
instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code
Register. Once the X bit is cleared to enable the XIRQ interrupt, it
cannot be set to disable it.

– The XIRQ interrupt is for external events such as power
failure which must be responded to.

• The rest of the HCS12 interrupts are masked with the I bit of
the CCR.

– All these other interrupts are also masked with a specific
interrupt mask.

– This allows you to enable any of these other interrupts you
want.

– The I bit can be set to 1 to disable all of these interrupts if
needed.

EE 308 Spring 2014

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt
allows you to interrupt the processor at a regular interval.

• Information on the Real Time Interrupt is in the CRG Block
User Guide.

• There are two clock sources for MC9S12 hardware.

– Some hardware uses the Oscillator Clock. The RTI system
uses this clock.

* For our MC9S12, the oscillator clock is 8 MHz.

– Some hardware uses the Bus Clock. The Timer system
(including the Timer Overflow Interrupt) use this clock.

* For our MC9S12, the bus clock is 24 MHz.

EE 308 Spring 2014

• The specific interrupt mask for the Real Time Interrupt is the
RTIE bit of the CRGINT register.

• When the Real Time Interrupt occurs, the RTIF bit of the
CRGFLG register is set.

• To clear the Real Time Interrupt write a 1 to the RTIF bit of
the CRGFLG register.

• The interrupt rate is set by the RTR 6:4 and RTR 3:0 bits of the
RTICTL register. The RTR 6:4 bits are the Prescale Rate Select
bits for the RTI, and the RTR 2:0 bits are the Modulus Counter
Select bits to provide additional granularity.

• To use the Real Time Interrupt, set the rate by writing to the RTR
6:4 and the RTR 3:0 bits of the RTICTL, and enable the interrupt
by setting the RTIE bit of the CRGINT register

– In the Real Time Interrupt ISR, you need to clear the RTIF
flag by writing a 1 to the RTIF bit of the CRGFLG register.

EE 308 Spring 2014

• The following table shows all possible values, in ms, selectable
by the RTICTL register (assuming the system uses a 8 MHz
oscillator):

EE 308 Spring 2014

• Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h" /* DBug12 RAM-based interrupt */

/* vectors */
#define enable() _ _asm(cli)
#define disable() _ _asm(sei)

interrupt void rti_isr(void);

void main(void)
{

disable();

DDRB = 0xff;
PORTB = 0;

RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;

enable();
while (1)
{

_ _asm(wai); /* Do nothing -- wait for interrupt */
}

}

EE 308 Spring 2014

interrupt void rti_isr(void)
{

PORTB = PORTB + 1;
CRGFLG = 0x80;

}

To display a 16 bit number on the four 7-segment LEDs, you need
to display each 4-bit nibble sequentially. e.g., to display the
number 0x1234, you will first have to display the “1” on the left-
most 7-segment LED (turning on segments b and c) for a few
milliseconds, then display the “2” on the next 7-segment LED for a
few ms, then the “3”, and finally the “4”.

An easy way to do this is to do it inside an RTI interrupt service
routine. Use a static variable to keep track of which nibble to
display. The following RTI interrupt service routine displays a
global 16-bit variable called value on the seven-segment display.

EE 308 Spring 2014

interrupt void rti_isr(void)
{

static unsigned char nibble=0;
/* Array to convert nibble to segments to turn on. For example, 0 is
displayed with segments a, b, c, d, e, and f, or 0011 1111

 gfe dcba
*/

const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,
 0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
 0x58, 0x5e, 0x79, 0x71};

switch (nibble) {
case 0: PTP = 0x0E; / * Enable the left-most display 1110 */

 PTJ |= 0x02;
 PORTB = hex2seven_seg[(value>>12)&0x0F];
 break;

case 1: PTP = 0x0D; /* Enable the next display 1101 */
 PTJ |= 0x02;
 PORTB = hex2seven_seg[(value>>8)&0x0F];
 break;

case 2: PTP = 0x0B; / * Enable the next display 1011 */
 PTJ |= 0x02;
 PORTB = hex2seven_seg[(value>>4)&0x0F];
 break;

case 3: PTP = 0x07; /* Enable right-most display 0111 */
 PTJ |= 0x02;
 PORTB = hex2seven_seg[(value)&0x0F];
 break;

}
nibble = (nibble + 1) % 4;
CRGFLG = 0x80; /* Clear the RTI flag */

}

EE 308 Spring 2014

• You cannot pass a value to an interrupt service routine, so any
variable from another part of the program used by the ISR must be
declared as global.

• You cannot pass a value out of an ISR, so if another part of the
program needs a value determined inside an ISR, you must use a
global variable. It must also be declared as volatile so the
compiler knows that its value may change outside the regular
program flow.

