
EE 308 Spring 2014

• HC12 Addressing Modes
o Inherent, Extended, Direct, Immediate, Indexed, and

Relative Modes
o Summary of MC9S12 Addressing Modes
o Using X and Y registers as pointers
o How to tell which branch instruction to use

• Instruction coding and execution
o How to hand assemble a program
o Number of cycles and time taken to execute an

MC9S12 program

The MC9S12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to
access

Effective address:
Memory address used by instruction (all modes except INH)

Addressing mode:
How the MC9S12 calculates the effective address

EE 308 Spring 2014

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

EE 308 Spring 2014

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) → A
18 06

CLRA ; Clear A 0 → A
87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) − 0x00 Set CCR
97

The HC12 does not access memory

There is no effective address

EE 308 Spring 2014

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $1000 ; ($1000) → A
B6 10 00 Effective Address: $1000

LDX $1001 ; ($1001:$1002) → X
FE 10 01 Effective Address: $1001

STAB $1003 ; (B) → $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op
code

EE 308 Spring 2014

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode
Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) → A
96 20 Effective Address: $0020

STX $21 ; (X) → $0021:$0022
5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op code

EE 308 Spring 2014

The Immediate (IMM) addressing mode

Value to be used is part of instruction
LDAA #$17 ; $17 → A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A → A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

EE 308 Spring 2014

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)
Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add
to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X− ; Post−decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

INC 4,+X ; Pre−increment Indexed
; Add 4 to X
; then increment the number at address (X)

62 23 Effective address: contents of X + 4

EE 308 Spring 2014

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

EE 308 Spring 2014

INDEXED ADDRESSING MODES
(Does not include indirect modes)

The data books list three different types of indexed modes:

• Table 3.2 of the S12CPUV2 Reference Manual shows details

• IDX: One byte used to specify address
– Called the postbyte
– Tells which register to use
– Tells whether to use autoincrement or autodecrement
– Tells offset to use

EE 308 Spring 2014

• IDX1: Two bytes used to specify address
– First byte called the postbyte
– Second byte called the extension
– Postbyte tells which register to use, and sign of offset
– Extension tells size of offset

• IDX2: Three bytes used to specify address
– First byte called the postbyte
– Next two bytes called the extension
– Postbyte tells which register to use
– Extension tells size of offset

EE 308 Spring 2014

EE 308 Spring 2014

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long
branch instructions.

Branch instruction: One byte following op code specifies how far
to branch.

Treat the offset as a signed number; add the offset to the address
following the current instruction to get the address of the
instruction to branch to

(BRA) 20 35 PC + 2 + 0035 → PC

(BRA) 20 C7 PC + 2 + FFC7 → PC
 PC + 2 − 0039 → PC

Long branch instruction: Two bytes following op code specifies
how far to branch.

Treat the offset as an unsigned number; add the offset to the
address following the current instruction to get the address of the
instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A → PC
 If Z == 0 then PC + 4 → PC

When writing assembly language program, you don’t have to
calculate offset. You indicate what address you want to go to, and
the assembler calculates the offset

EE 308 Spring 2014

Summary of MC9S12 addressing modes
ADDRESSING MODES

A few instructions have two effective addresses:

• MOVB #$AA,$1C00 Move byte 0xAA (IMM) to address
$1C00 (EXT)

• MOVW 0,X,0,Y Move word from address pointed to by
X (IDX) to address pointed to by Y
(IDX)

EE 308 Spring 2014

A few instructions have three effective addresses:

• BRSET FOO,#$03,LABEL Branch to LABEL (REL) if bits
#$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use
ldx #table

not
ldx table

• For example, the following loads the address of table ($1000)
into X; i.e., X will point to table:

ldx #table ; Address of table ⇒ X

The following puts the first two bytes of table ($0C7A) into X. X
will not point to table:

ldx table ; First two bytes of table ⇒ X

• To step through table, need to increment pointer after use

ldaa 0,x
inx

or
ldaa 1,x+

EE 308 Spring 2014

EE 308 Spring 2014

Which branch instruction should you use?

Branch if A > B

Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0,
so 0xFF > 0x00

If signed, 0xFF = −1 and 0x00 = 0,
so 0xFF < 0x00

Using unsigned numbers: BHI (checks C bit of CCR)

Using signed numbers: BGT (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit

For signed numbers, use branch instructions which check V bit

EE 308 Spring 2014

Hand Assembling a Program
To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of
the program will go into memory.
(e.g., org $2000 will put the first instruction at address $2000.)

2. Look at the first instruction. Determine the addressing mode
used.
(e.g., ldab #10 uses IMM mode.)

3. Look up the instruction in the MC9S12 S12CPUV2 Reference
Manual, find the appropriate Addressing Mode, and the Object
Code for that addressing mode. (e.g., ldab IMM has object code
C6 ii.)

• Table A.1 of S12CPUV2 Reference Manual has a concise
summary of the instructions, addressing modes, op-codes,
and cycles.

4. Put in the object code for the instruction, and put in the
appropriate operand. Be careful to convert decimal operands to hex
operands if necessary. (e.g., ldab #10 becomes C6 0A.)

5. Add the number of bytes of this instruction to the address of the
instruction to determine the address of the next instruction.
(e.g., $2000 + 2 = $2002 will be the starting address of the next
instruction.)

EE 308 Spring 2014

 org $2000
 ldab #10
loop: clra
 dbne b,loop
 swi

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2010

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1
 2 2 0000 2000 prog: equ $2000
 3 3 org prog
 4 4 a002000 C60A ldab #10
 5 5 a002002 87 loop: clra
 6 6 a002003 0431 FC dbne b,loop
 7 7 a002006 3F swi

EE 308 Spring 2014

EE 308 Spring 2014

EE 308 Spring 2014

EE 308 Spring 2014

MC9S12 Cycles

• 68HC12 works on 48 MHz clock

• A processor cycle takes 2 clock cycles –P clock is 24 MHz

• Each processor cycle takes 41.7 ns (1/24 MHz) to execute

• An instruction takes from 1 to 12 processor cycles to execute

• You can determine how many cycles an instruction takes by
looking up the CPU cycles for that instruction in the S12CPUV2
Core Users Guide.

– For example, LDAA using the IMM addressing mode
shows one CPU cycle (of type P).

– LDAA using the EXT addressing mode shows three CPU
cycles (of type rPO).

- Section 6.6 of the S12CPUV2 Reference Manual explains
what the MC9S12 is doing during each of the different types
of CPU cycles.

2000 org $2000 ; Inst Mode Cycles
2000 C6 0A ldab #10 ; LDAB (IMM) 1
2002 87 loop: clra ; CLRA (INH) 1
2003 04 31 FC dbne b,loop ; DBNE (REL) 3
2006 3F swi ; SWI 9

How many cycles does it take?
How long does it take to execute?

EE 308 Spring 2014

The program executes the ldab #10 instruction once (which takes
one cycle). It then goes through loop 10 times (which has two
instructions, one with one cycle and one with three cycles), and
finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

1 + 10 × (1 + 3) + 9 = 50

50 cycles = 50 × 41.7 ns/cycle = 2.08 μs

EE 308 Spring 2014

EE 308 Spring 2014

EE 308 Spring 2014

EE 308 Spring 2014

