

HC12 Addressing Modes

- Inherent, Extended, Direct, Immediate, Indexed, and Relative Modes
- Summary of MC9S12 Addressing Modes
- o Using X and Y registers as pointers
- How to tell which branch instruction to use

• Instruction coding and execution

- How to hand assemble a program
- Number of cycles and time taken to execute an MC9S12 program

The MC9S12 has 6 addressing modes

Most of the HC12's instructions access data in memory There are several ways for the HC12 to determine which address to access

Effective address:

Memory address used by instruction (all modes except INH)

Addressing mode:

How the MC9S12 calculates the effective address

HC12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won't study indirect indexed mode)

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA 18 06	; Add B to A (A) + (B) \rightarrow A
CLRA 87	; Clear A $0 \rightarrow A$
ASRA 47	; Arithmetic Shift Right A
TSTA 97	; Test A (A) – 0x00 Set CCR

The HC12 does not access memory

There is no effective address

The Extended (EXT) addressing mode

Instructions which give the 16–bit address to be accessed

LDAA \$1000	; (\$1000) \rightarrow A
B6 10 00	Effective Address: \$1000
LDX \$1001	; (\$1001:\$1002) \rightarrow X
FE 10 01	Effective Address: \$1001
STAB \$1003	; (B) \rightarrow \$1003
7B 10 03	Effective Address: \$1003

Effective address is specified by the two bytes following op code

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode Instructions which give 8 LSB of address (8 MSB all 0)

LDAA \$20	; (\$0020) → A
96 20	Effective Address: \$0020

8 LSB of effective address is specified by byte following op code

The Immediate (IMM) addressing mode

Value to be used i	s part of instruction
LDAA #\$17	; $17 \rightarrow A$
B6 17	Effective Address: PC + 1
ADDA #10	; (A) + $A \rightarrow A$
8B 0A	Effective Address: PC + 1

Effective address is the address following the op code

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC) Simple Forms

LDAA 0,X A6 00	; Use (X) as address to get value to put in A Effective address: contents of X
ADDA 5,Y	; Use (Y) + 5 as address to get value to add
AB 45	Effective address: contents of Y + 5

More Complicated Forms

INC 2,X-	; Post-decrement Indexed
	; Increment the number at address (X),
	; then subtract 2 from X
62 3E	Effective address: contents of X

INC 4,+X	; Pre–increment Indexed
	; Add 4 to X
	; then increment the number at address (X)
62 23	Effective address: contents of X + 4

			ong noue cumury	
Addressing Mode	Source Format	Abbreviation	Description	
Inherent	INST (no externally supplied operands)	INH	Operands (if any) are in CPU registers	
Immediate	INST #opr8i or INST #opr16i	IMM	Operand is included in instruction stream 8- or 16-bit size implied by context	
Direct	INST opr8a	DIR	Operand is the lower 8 bits of an address in the range \$0000-\$00FF	
Extended	INST opr16a	EXT	Operand is a 16-bit address	
Relative	INST rel8 or INST rel16	REL	An 8-bit or 16-bit relative offset from the current pc is supplied in the instruction	
Indexed (5-bit offset)	INST oprx5,xysp	IDX	5-bit signed constant offset from X, Y, SP, or PC	
Indexed (pre-decrement)	INST oprx3,-xys	IDX	Auto pre-decrement x, y, or sp by 1 ~ 8	
Indexed (pre-increment)	INST oprx3,+xys	IDX	Auto pre-increment x, y, or sp by 1 ~ 8	
Indexed (post-decrement)	INST oprx3,xys-	IDX	Auto post-decrement x, y, or sp by 1 ~ 8	
Indexed (post-increment)	INST oprx3,xys+	IDX	Auto post-increment x, y, or sp by 1 - 8	
Indexed (accumulator offset)	INST abd,xysp	IDX	Indexed with 8-bit (A or B) or 16-bit (D) accumulator offset from X, Y, SP, or PC	
Indexed (9-bit offset)	INST oprx9,xysp	IDX1	9-bit signed constant offset from X, Y, SP, or PC (lower 8 bits of offset in one extension byte)	
Indexed (16-bit offset)	INST oprx16,xysp	IDX2	16-bit constant offset from X, Y, SP, or PC (16-bit offset in two extension bytes)	
Indexed-Indirect (16-bit offset)	INST [oprx16,xysp]	[IDX2]	Pointer to operand is found at 16-bit constant offset from X, Y, SP, or PC (16-bit offset in two extension bytes)	
Indexed-Indirect (D accumulator offset)	INST [D,xysp]	[D,IDX]	Pointer to operand is found at X, Y, SP, or PC plus the value in D	

Table 3-1. M68HC12 Addressing Mode Summary

Different types of indexed addressing modes (Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES (Does not include indirect modes)

	Example	Effective Address	Offset	Value in X After Done	Regi <i>s</i> ters To Use
Constant Offset	LDAA n,X	(X)+n	0 to FFFF	(X)	X, Y, SP, PC
Constant Offset	LDAA - n, X	(X)-n	0 to FFFF	(X)	X, Y, SP, PC
Postincement	LDAA n, X+	(X)	1 to 8	(X)+n	Х, Ү, ЗР
Preincrement	LDAA n, +X	(X)+n	1 to 8	(X)+n	Х, Ү, SP
Postdecrement	LDAA n, X-	(X)	1 to 8	(X)-n	Х, Ү, SP
Predecrement	LDAA n,-X	(X)-n	1 to 8	(X)-n	Х, Ү, SP
ACC Offset	LDAAA,X LDAAB,X LDAAD,X	(X)+(A) (X)+(B) (X)+(D)	0 to FF 0 to FF 0 to FFFF	(X)	Х, Ү, SP, PC

The data books list three different types of indexed modes:

- Table 3.2 of the S12CPUV2 Reference Manual shows details
- **IDX:** One byte used to specify address
 - Called the postbyte
 - Tells which register to use
 - Tells whether to use autoincrement or autodecrement
 - Tells offset to use

- IDX1: Two bytes used to specify address
 - First byte called the postbyte
 - Second byte called the extension
 - Postbyte tells which register to use, and sign of offset
 - Extension tells size of offset
- **IDX2:** Three bytes used to specify address
 - First byte called the postbyte
 - Next two bytes called the extension
 - Postbyte tells which register to use
 - Extension tells size of offset

Postbyte Code (xb)	Source Code Syntax	Comments rr; 00 = X, 01 = Y, 10 = SP, 11 = PC		
rrOnnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 r can specify X, Y, SP, or PC		
111mOzs	n,r —n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte(s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) r can specify X, Y, SP, or PC	–256 ≤ n ≤ 255 –32,768 ≤ n ≤ 65,535	
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC	-32,768 ≤ n ≤ 65,535	
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 r can specify X, Y, or SP (PC not a valid choice) +8 = 0111 +1 = 0000 -1 = 1111 -8 = 1000	r postincrement;	
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa-00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect r can specify X, Y, SP, or PC		
111m111	[D,r]	Accumulator D offset indexed-indirect r can specify X, Y, SP, or PC		

Indexed addressing mode instructions use a postbyte to specify index registers (X and Y), stack pointer (SP), or program counter (PC) as the base index register and to further classify the way the effective address is formed. A special group of instructions cause this calculated effective address to be loaded into an index register for further calculations:

- · Load stack pointer with effective address (LEAS)
- Load X with effective address (LEAX)
- Load Y with effective address (LEAY)

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long branch instructions.

Branch instruction: One byte following op code specifies how far to branch.

<u>Treat the offset as a signed number</u>; add the offset to the address following the current instruction to get the address of the instruction to branch to

(BRA) 20 35 PC + 2 + 0035 → PC (BRA) 20 C7 PC + 2 + FFC7 → PC PC + 2 - 0039 → PC

Long branch instruction: Two bytes following op code specifies how far to branch.

<u>Treat the offset as an unsigned number</u>; add the offset to the address following the current instruction to get the address of the instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A \rightarrow PC If Z == 0 then PC + 4 \rightarrow PC

When writing assembly language program, you don't have to calculate offset. You indicate what address you want to go to, and the assembler calculates the offset

Summary of MC9S12 addressing modes
ADDRESSING MODES

Na	me	Example	Op Code	Effective Address
INH	Inherent	ABA	18 06	None
IMM	Immediate	LDAA #\$35	86 35	PC + 1
DIR	Direct	LDAA \$35	96 35	0x0035
EXT	Extended	LDAA \$2035	B6 20 35	0 x 2035
IDX IDX1 IDX2	Indexed	LDAA 3,X LDAA 30,X LDAA 300,X	A6 03 A6 E0 13 A6 E2 01 2C	X + 3 X + 30 X + 300
IDX	Indexed Postincrement	ldaa 3, x+	A6 32	x (x+3 -> x)
IDX	Indexed Preincrement	ldaa 3,+x	A6 22	X+3 (X+3 -> X)
IDX	Indexed Postdecrement	LDAA 3, X-	A6 3D	x (x-3 -> x)
IDX	Indexed Predecrement	LDAA 3,-X	A6 2D	X−3 (X−3 → X)
REL	Relative	BRA \$1050 LBRA \$1F00	20 23 18 20 OE CF	PC + 2 + Offset PC + 4 + Offset

A few instructions have two effective addresses:

• MOVB #\$AA,\$1C00	Move byte 0xAA (IMM) to address
	\$1C00 (EXT)
• MOVW 0,X,0,Y	Move word from address pointed to by
	X (IDX) to address pointed to by Y
	(IDX)

A few instructions have three effective addresses:

• **BRSET FOO,#\$03,LABEL** Branch to LABEL (REL) if bits #\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

• Registers X and Y are often used to point to data.

• To initialize pointer use **ldx #table**

not

ldx table

• For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:

ldx #table ; *Address of table* \Rightarrow *X*

The following puts the first two bytes of table (\$0C7A) into X. X will not point to table:

ldx table ; *First two bytes of table* \Rightarrow *X*

• To step through table, need to increment pointer after use

```
ldaa 0,x
inx
```

or

ldaa 1,x+

table	
cabie	

Data	Address
0C	\$1000
7A	\$1001
D5	\$1002
00	\$1003
61	\$1004
62	\$1005
63	\$1006
64	\$1007

	org	\$1000
table:	dc.b	12,122,-43,0
	dc.b	'a'
	dc.b	'b'
	dc.b	' c'
	dc.b	' d'

Which branch instruction should you use?

Branch if A > B

Is 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0, so 0xFF > 0x00

If signed, 0xFF = -1 and 0x00 = 0, so 0xFF < 0x00

Using unsigned numbers: **BHI** (checks C bit of CCR)

Using signed numbers: **BGT** (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit

For signed numbers, use branch instructions which check V bit

Hand Assembling a Program

To hand-assemble a program, do the following:

1. Start with the org statement, which shows where the first byte of the program will go into memory.

(e.g., org \$2000 will put the first instruction at address \$2000.)

2. Look at the first instruction. Determine the addressing mode used.

(e.g., **ldab** #10 uses IMM mode.)

3. Look up the instruction in the **MC9S12 S12CPUV2 Reference Manual**, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., **Idab IMM** has object code **C6 ii**.)

• Table A.1 of S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.

4. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (e.g., **ldab #10** becomes **C6 0A**.)

5. Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction. (e.g., \$2000 + 2 = \$2002 will be the starting address of the next instruction.)

org \$2000 ldab #10 loop: clra dbne b,loop swi

Freescale HC12-Assembler (c) Copyright Freescale 1987-2010

Abs. Rel. Loc Obj. code Source line ____ ____ _____ 1 1 2 2 0000 2000 prog: equ \$2000 3 3 org prog ldab #10 4 4 a002000 C60A 5 5 a002002 87 loop: clra 6 a002003 0431 FC dbne b,loop 6 7 7 a002006 3F swi

		Addr.	Machine	Ao	cess Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
LBGT rah 6	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	0999/0901	OPPP/OPO ¹		
LBHI <i>reht</i>	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	0999/0901	OPPP/OPO ¹		
LBHS raht 6	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	0999/0901	OPPP/OP0 ¹		
LBLE rah 6	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	0999/0901	OPPP/OPO ¹		
LBLO rohe	Long Branch it Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	0999/0901	OPPP/OP0 ¹		
LBLS raft 6	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	0999/0901	OPPP/OPO1		
LBLT rohe	Long Branch if Less Than (if N ⊕ V = 1) (signed)	REL	18 2D qq rr	0999/0901	OPPP/OPO ¹		
LBMI ral 16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	0999/0901	OPPP/OP01		
LBNE raft 6	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OFFF/OF01	OPPP/OP01		
LBPL raht 6	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	0999/0901	OPPP/OP01		
LBRA rahte	Long Branch Always (f 1-1)	REL	18 20 qq rr	0999	OPPP		
LBRN rol 16	Long Branch Never (# 1 = 0)	REL	18 21 qq rr	090	OPD		
LBVC raft 6	Long Branch if Overflow Bit Clear (if V-0)	REL	18 28 qq rr	0999/0901	OPPP/OP01		
LBVS reht	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	0999/0901	OPPP/OP01		
ШАА жарибі ШАА ариба ШАА ариба ШАА ариб ууар ШАА ариб ууар ШАА ариб ууар ШАА ариб ууар ШАА [руктб/ууар]	(M) → A Load Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,IDX]	86 11 96 dd 86 hh 11 A6 xb A6 xb ff A6 xb ff A6 xb Ge ff A6 xb A6 xb Ge ff	p rPf rP0 rPf rP0 frP0 frP0 fifrPf fifrPf	9 rf9 rf9 rf9 r90 fr99 f19rf9 f19rf9		ΔΔ0-
LDAB sopesi LDAB operisa LDAB operisa LDAB operisa LDAB operisysp LDAB operisysp LDAB [operisysp] LDAB [operisysp]	(M) → B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [D,IDX2]	C6 11 D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb Ge ff E6 xb E6 xb Ge ff	P rPf rP0 rPf rP0 frPP flfrPf flPrPf	rfp rfp rfp rfp rfp frfp frfp filprfp		AA0-
LDD #opr16/ LDD qor8a LDD qor16a LDD qonx1,xyap LDD qonx1,xyap LDD qonx16,xyap LDD qonx16,xyap LDD [oprx16,xyap]	(M-M+1) → A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	CC jj kk DC dd FC hh 11 EC xb EC xb ff EC xb ff EC xb ee ff EC xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIFRPf	OP REP ROP REP REP EIREP EIREP EIREP		ΔΔ0-

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	SXHI	NZVC
BLS ##	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	222/p ¹ 222/p ¹		
BLT rol8	Branch if Less Than (if N ⊕ V = 1) (signed)	REL	2D rr	ppp/pl ppp/pl		
BMI rol8	Branch if Minus (if N = 1)	REL	2B rr	ppp/p1 ppp/p1		
BNE rol8	Branch if Not Equal (if Z = 0)	REL	26 rr	222/p ¹ 222/p ¹		
BPL et	Branch if Plus (if N = 0)	REL	2A rr	222/p ¹ 222/p ¹		
BRArelB	Branch Always (if 1 - 1)	REL	20 rr	777 777		
BRCLR opnSa, makä, nakä BRCLR opn16a, makä, nalä BRCLR opn02, xysp, makä, nalä BRCLR opn13,xysp, makä, nalä BRCLR opn116,xysp, makä, nakä	Branch if (M) + (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb Ge ff mm rr	rppp rppp rfppp rfppp rppp rppp rfppp rfppp rfppp rfppp frpfppp frpfppp		
BRN rale	Branch Never (if 1 - 0)	REL	21 rr	7 7		
BRSET oprå, msk8, ral8 BRSET opråla, msk8, ral8 BRSET oprø2,xyap, msk8, ral8 BRSET oprø2,xyap, msk8, ral8 BRSET oprø18,xyap, msk8, ral8	Branch if [M] + (mm) – 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh 11 mm rr 0E xb mm rr 0E xb ff mm rr 0E xb Ge ff mm rr	r979 r979 rfppp rfppp r979 r979 rfppp rfppp rfppp rffppp prfppp frpppp		
BSET opr8, msk8 BSET opr10_ygp, msk8 BSET opr00_ygp, msk8 BSET opr01,gp, msk8 BSET opr116,ygp, msk8 BSET opr116,ygp, msk8	$(M) + (mm) \rightarrow M$ Set Bit(s) in Mamory $(SP) - 2 \rightarrow SP; RTN_{45}RTN_{L} \rightarrow M_{(SP)5}M_{(SP+1)}$	DIR EXT IDX IDX1 IDX2 REL	4C ddimm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb se ff mm 07 rr	27w0 270w 27w0 2770w 27w0 2770w 27w0 2790w 57w9 279w0 57779 27775		ΔΔ0-
	Subroutine address → PC Branch to Subroutine					
BVC rol8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	ppp/p ¹ ppp/p ¹		
BVS ral8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	ppp/p ¹ ppp/p ¹		
CALL oprifac, page CALL opro2, ysp. page CALL opro2, ysp. page CALL opro16, ysp. page CALL [D, ysp] CALL [opro16, ysp]	[SP] - 2 → SP; HTN ₄ , HTN ₄ → M _(SP) M _(SP+1) [SP] - 1 → SP; (PPG] → M _(SP) ; pg → PPAGE register, Program address → PC Call subroutine in extended memory (Program may be located on another separation memory page.) Indirect modes get program address and new pg value based on pointer.	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb ee ff 4B xb ee ff	gnExpPP gnExPPP gnExPPP gnExPPP gnExPPP gnExPPP gnExPPP fgnExPPP fgnExPPP fgnExPPP flignExPPP flignExPP flignExP flignExP flignExP flignExP flignExP flignExP flignExP flignEx		
CBA	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00 00		ΔΔΔΔ
CLC	0 → C Translates to ANDCC #\$FE	IMM	10 FE	P 7		0
сп	0 → 1 Translates to ANDCC #\$EF (enables l-bit interrupts)	IMM	10 EF	P P	0	
CLR opr16a CLR opra2, xysp CLR opra16, xysp CLR (pra16, xysp) CLR (pra16, xysp) CLR (pra16, xysp) CLRA CLRB CLV	$0 \rightarrow M$ Clear Memory Location $0 \rightarrow A$ Clear Accumulator A $0 \rightarrow B$ Clear Accumulator B $0 \rightarrow V$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 87 87 C7 10 FD	Pw0 w07 Pw0 Pw0 Pw0 Pw0 Pw7 Pw7 Pufw Plfw Plfw Plfw 0 0 0 0 2 2		0100
	Translates to ANDCC #\$FD			-		_

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Note 1. PPP/P indicates this instruction takes three cycles to refil the instruction queue if the branch is taken and one program letch cycle if the branch is not taken.

		Addr. Machine		Access Detail			
Source Form	Operation	Mode	Coding (hex)	HCS12 M68	HC12	SXHI	NZVC
CMPB #opr8i	(B) - (M)	IMM	Cl 11	P	P		$\Delta \Delta \Delta \Delta$
CMPB oprSt	Compare Accumulator B with Memory	DIR	D1 dd	rPÉ	rfP		
CMPB opr16a CMPB oprx0_xysp		EXT	F1 hh 11 E1 xb	= PO = PE	r0P rfP		
CMPB opro2,xysp		IDX1	El xb ff	170	rPO		
CMPB opx://sysp		ID02	El xb ee ff		frpp		
CMPB [D,xysp]		[D,IDX]	E1 xb		frfp		
CMPB [qp/x:16,xysp]		[IDX2]	El xb ee ff	EIPePE EI	PrfP		
COM op r16a	$(\overline{M}) \rightarrow M$ equivalent to $FF - (M) \rightarrow M$	EXT	71 hh 11	z 9w0	rOPw		ΔΔ01
COM april xysp	1's Complement Memory Location	IDX	61 xb	r?w	rPw		
COM op not xysp	, , , , , , , , , , , , , , , , , , , ,	IDX1	61 xb ff		rPOw		
COM aprovi6, xysp		IDX2 ID.IDX1	61 xb ee ff 61 xb		r PPw frPw		
COM [D, xysp] COM [oprx16, xysp]		100(2)	61 xb ee ff		PrPw		
COMA	(A) → A Complement Accumulator A	INH	41	0	0		
COMB	(B) → B Complement Accumulator B	INH	51	0	0		
CPD #qpr18i	(A:B) - (M:M+1)	IMM	BC jj kk	20	OP		$\Delta \Delta \Delta \Delta$
CPD opr8a	Compare D to Memory (16-Bit)	DIR	9C dd	RPE	REP		
CPD opr1 6a		EXT	BC hh 11	RPO	ROP		
CPD cpmx0_xysp		IDX IDX1	AC xb AC xb ff	RPE	REP		
CPD oppositions		IDX1			RPO ERPP		
CPD oproct 6, xysp CPD [D, xysp]		ID.IDXI	AC xb ee ff AC xb		EREP		
CPD [oprx16,xysp]		100(2)	AC XD GG ff		PREP		
CPS #opr16i	(SP) - (M:M+1)	IMM	8F 11 kk	20	OF		
CPSopra	Compare SP to Memory (16-Bit)	DIR	9F dd	RPE	REP		
CPSopri6a		EXT	BF hh 11	RPO	ROP		
CPS opro0_xysp		IDX	AF xb	RPE	REP		
CPS oprol xysp		IDX1	AF xb ff	RPO	RPO		
CPS opro16, sysp		1002	AF xb ee ff		ERPP		
CPS [D,xysp] CPS [aprx:16,xysp]		[D,IDX] [IDX2]	AF xb AF xb ee ff		frfp prfp		
	00 AMM -0	IMM			_		
CPX #opr16i	(X) - (M:M+1)	DIR	BE jj kk 9E dd	PO RPE	OP REP		
CPX opr8a CPX opr16a	Compare X to Memory (16-Bit)	EXT	HE hh 11	RPD	ROP		
CPX opril xysp		IDX I	AE xb	RPE	REP		
CPX optx8 xysp		IDX1	AE xb ff	RPO	RPO		
CPX optx16,xysp		1002	AE xb ee ff	ERPP	ERPP		
CPX [D,xysp]		[D,IDX]	AE xb		frfp		
CPX [qp/xr16,xysp]		[ID02]	AE xb ee ff	EIPRPE EI	PREP		
CPY #opr16i	(Y) - (M:M+1)	IMM	8D jj kk	PO	90		
CPY opr8a CPY opr16a	Compare Y to Memory (16-Bit)	DIR	9D dd BD hh 11	RPE RPO	REP		
CPY opnit was		IDX	AD xb	RPO RPE	REP		
CPY opnoRxysp		IDX1	AD xb ff	RPO	RPO		
CPY opx16,ysp		IDX2	AD xb ee ff		ERPP		
CPY [D,xysp]		[D,IDX]	AD xb	fifrpf fi	EREP		
CPY [qp/x:16,xysp]		[1002]	AD xb ee ff	EIPRPE EI	PREP		
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	o£o	ofo		ΔΔ?Δ
DBEQ abdays, rela	(ontr) – 1→ ontr	REL	04 1b rr	PPP (branch)	222		
	if (ontr) = 0, then Branch	(9-bit)		PPO (no			
	else Continue to next instruction			branch)			
	Descent Constant of Description						
	Decrement Counter and Branch if = 0 (ontr = A, B, D, X, Y, or SP)						
DBNE abdxys, ral9	(ontr) – 1 → ontr	REL	04 1b rr	PPP (branch)	222		
	If (ontr) not = 0, then Branch;	(9-bit)		PPO (no			
	else Continue to next instruction			branch)			
	Decrement Counter and Branch if ≠ 0	I					
	(ontr = A, B, D, X, Y, or SP)						

Table A-1. Instruction Set Summary (Sheet 4 of 14)

MC9S12 Cycles

- 68HC12 works on 48 MHz clock
- A processor cycle takes 2 clock cycles –P clock is 24 MHz
- Each processor cycle takes **41.7 ns** (1/24 MHz) to execute
- An instruction takes from **1** to **12** processor cycles to execute

• You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the S12CPUV2 Core Users Guide.

– For example, **LDAA** using the **IMM** addressing mode shows one CPU cycle (of type P).

– **LDAA** using the **EXT** addressing mode shows three CPU cycles (of type **rPO**).

- Section 6.6 of the S12CPUV2 Reference Manual explains what the MC9S12 is doing during each of the different types of CPU cycles.

2000		org \$2000	; Inst	Mode	Cycles
2000	C6 0A	ldab #10	; LDAB	(IMM)	1
2002	87	loop: clra	; CLRA	(INH)	1
2003	04 31 FC	dbne b,loop	; DBNE	(REL)	3
2006	3F	swi	; <i>SWI</i>		9

How many cycles does it take? How long does it take to execute?

The program executes the **ldab #10** instruction **once** (which takes one cycle). It then goes through loop **10 times** (which has two instructions, one with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

 $1 + 10 \times (1 + 3) + 9 = 50$

50 cycles = 50×41.7 ns/cycle = 2.08 µs

LDAB

Load B

Operation $(M) \Rightarrow B$ or

 $imm \Rightarrow B$

Loads B with either the value in M or an immediate value.

CCR

Effects

S	х	н	Т	Ν	z	۷	С
-	-	-	-	Δ	Δ	0	-

N: Set If MSB of result is set; cleared otherwise Z: Set If result is \$00; cleared otherwise

V: Cleared

Code and

CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
LDAB #opr8/	IMM	C6 ii	P
LDAB opr8a	DIR	D6 dd	rPf
LDAB opr16a	EXT	F6 hh 11	rPO
LDAB oprx0_xysppc	IDX	E6 xb	rPf
LDAB oprx9,xysppc	IDX1	E6 xb ff	rPO
LDAB oprx16,xysppc	IDX2	E6 xb ee ff	frPP
LDAB [D,xysppc]	[D,IDX]	E6 xb	fIfrPf
LDAB [oprx16,xysppc]	[D,IDX]	E6 xb ee ff	fIPrPf

CLRA						C	Clea	r A			С	LR	Α
Operation:	0 ⇒	⇒ A											
Description:	All t	oits i	in ac	cum	nulat	or A	are	clea	ared to 0.				
CCR Details:	s _	x	н	I _	N	z	v	C 0	1				
	Z: V:	0; 0 1; s 0; c 0; c	set clear	red	1	1	1	1]				

Source Form	Address	Object Code	Access Detail	
Source Form	Mode	Object Code	HCS12	M68HC12
CLRA	INH	87	0	0

DBNE Decrement and Branch if Not Equal to Zero DBNE

Operation: (Counter) $-1 \Rightarrow$ Counter If (Counter) not = 0, then (PC) + \$0003 + Rel \Rightarrow PC

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If the counter register has not been decremented to zero, execute a branch to the specified relative destination. The DBNE instruction is encoded into three bytes of machine code including a 9-bit relative offset (-256 to +255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DBNE except that the counter is incremented or tested rather than being decremented. Bits 7 and 6 of the instruction postbyte are used to determine which operation is to be performed.

CCR Details:	S	х	Н	-		_	-	С
CCR Details.	-	-	-	I	I	-	I	-

Source Form	Address	Object Code ⁽¹⁾	Access Deta	il
Source Form	Mode	Object Code.	HCS12	M68HC12
DBNE abdxys, rel9	REL	04 lb rr	PPP/PPO	PPP

Encoding for 1b is summarized in the following table. Bit 3 is not used (don't care), bit 5 selects branch on zero (DBEQ – 0)
or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0 for DBNE.

Count Register	Bits 2:0	Source Form	Object Code (If Offset is Positive)	Object Code (If Offset is Negative)
Α	000	DBNE A, rel9	04 20 rr	04 30 rr
В	001	DBNE B, rel9	04 21 rr	04 31 rr
D	100	DBNE D, rel9	04 24 rr	04 34 rr
X	101	DBNE X, rel9	04 25 rr	04 35 rr

SWI	Software Interrupt	SWI
Operation:	$\begin{array}{l} (SP) - \$0002 \Rightarrow SP; RTN_{H} \colon RTN_{L} \Rightarrow (M_{(SP)} \colon M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; Y_{H} \colon Y_{L} \Rightarrow (M_{(SP)} \colon M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; X_{H} \colon X_{L} \Rightarrow (M_{(SP)} \colon M_{(SP+1)}) \\ (SP) - \$0002 \Rightarrow SP; B \colon A \Rightarrow (M_{(SP)} \colon M_{(SP+1)}) \\ (SP) - \$0001 \Rightarrow SP; CCR \Rightarrow (M_{(SP)}) \\ 1 \Rightarrow I \\ (SWI \ Vector) \Rightarrow PC \end{array}$	
Description:	Causes an interrupt without an external interrupt service req address of the next instruction after SWI as a return address return address, index registers Y and X, accumulators B an CCR, decrementing the SP before each item is stacked. Th then set, the PC is loaded with the SWI vector, and instructi resumes at that location. SWI is not affected by the I mask I Section 7. Exception Processing for more information.	s. Stacks the d A, and the e I mask bit is ion execution

CCR Details:	s	х	н	Т	Ν	Ζ	V	С	_
COR Details.	-	1	-	1	-	-	-	-	

I: 1; set

Source Form	Address Mode	Object Code	Access Detail		
Source Form		Object Code	HCS12	M68HC12	
SWI	INH	3F	VSPSSPSsP ⁽¹⁾	VSPSSPSsP ⁽¹⁾	

1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A variation of the sequence (VfPPP) is used for resets.