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• Decimal, Hexadecimal and Binary Numbers 
• Writing an assembly language program 

o Disassembly of MC9S12 op codes 
o Use flow charts to lay out structure of program 
o Use common flow structures 

 if-then 
 if-then-else 
 do-while 
 while 

o Do not use spaghetti code 
o Plan structure of data in memory 
o Plan overall structure of program 
o Work down to more detailed program structure 
o Implement structure with instructions 
o Optimize program to make use of instruction 

efficiencies 
o Do not sacrifice clarity for efficiency 

Binary, Hex and Decimal Numbers (4-bit representation)

Binary Hex Decimal

0000
0001
0010

…
1010
1011
1100
1101
1110
1111

0
1
2
…
A
B
C
D
E
F

0
1
2
…
10
11
12
13
14
15
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What does a number represent?

Binary numbers are a code, and represent what the programmer 
intends for the code.

0x72 Some possible meanings:
’r’ (ASCII)
INC MEM (hh ll) (HC12 instruction)
2.26V (Input from A/D converter)
11410 (Unsigned number)
+11410 (Signed number)
Set temperature in room to 69 °F
Set cruise control speed to 120 mph

Binary to Unsigned Decimal:
Convert Binary to Unsigned Decimal
1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

Hex to Unsigned Decimal
Convert Hex to Unsigned Decimal
82D6 16

8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
33494 10
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Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex

721/16
45/16
2/16

45
2
0

1
13
2

1
D
2

721 10  =  2D1 16

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit 
0−7), then the number is positive.

Get decimal equivalent by converting number to decimal, and use 
the + sign.

Example for 8−bit number:

3A 16 −> + ( 3 x 161 + 10 x 160 ) 10 
               + ( 3 x 16  +  10 x 1 ) 10 
               + 58 10
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If the most significant bit is 1 (most significant hex digit 8−F), 
then the number is negative.

Get decimal equivalent by taking 2’s complement of number, 
converting to decimal, and using − sign.

Example for 8−bit number:

A316 −> -  (5C+1) 16

 -  ( 5 x 161 + 13 x 160 ) 10 
 -  ( 5 x 16  + 13 x 1 ) 10 
 -   93 10

One’s complement table makes it simple to finding 2’s 
complements

One’s complement

One’s complement
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One’s complement table makes it simple to finding 2’s 
complements

To take two’s complement, add one to one’s complement.

Take two’s complement of D0C3:

2F3C + 1 = 2F3D
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Addition and Subtraction of Binary and Hexadecimal 
Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) 
bits

How the C, V, N and Z bits of the CCR are changed?

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on 
subtraction)

Note: Not all instructions change these bits of the CCR
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Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or
 N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

  7A   2A   AC   AC
+52 +52 +8A +72
----- ----- ------ ------
  CC   7C    36   1E

C: 0 C: 0 C: 1 C: 1

V: 1 V: 0 V: 1 V: 0

N: 1 N: 0 N: 0 N: 0

Z: 0 Z: 0 Z: 0 Z: 0
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Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is 
greater than the minuend

V bit set when N - P = P or 
  P - N = N

N bit set when MSB is 1

Z bit set when result is 0

   7A   8A   5C   2C
  -5C  -5C  -8A  -72
  ----- ----- ------ ------
  1E   2E    D2   BA

C: 0 C: 0 C: 1 C: 1

V: 0 V: 1 V: 1 V: 0

N: 0 N: 0 N: 1 N: 1

Z: 0 Z: 0 Z: 0 Z: 0
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Writing Assembly Language Programs

Use Flowcharts to Help Plan Program Structure

Flow chart symbols:
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IF-THEN Flow Structure

             if (C)
             {
                     A;
                   }

EXAMPLE:

    if (A<10)
    {
        var = 5;
     }

         CMPA  #10 ; if (A<10)
         BLT      L1  ; signed numbers
         BRA     L2
L1:   LDAB   #5  ; var=5
         STAB   var
L2:   next instruction

OR:

          CMPA    #10 ; if(A<10)
          BGE       L2   ; signed numbers
          LDAB    #5    ; var=5
          STAB     var
L2:    next instruction
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IF-THEN-ELSE Flow Structure

             if (C)
             {
                 A;
              }
              else
              {
                  B;
              }

      if(A < 10)
      {
          var = 5;
      }
      else
      {
          var = 0;
      }

           CMPA          #10 ; if(A<10)
           BLT              L1  ; signed numbers
           CLR             var  ; var=0
           BRA             L2
L1:     LDAB          #5    ; var=5
           STAB           var
L2:     next instruction



EE 308    Spring 2014

DO WHILE Flow Structure

              do
             {
                 A;
              }
              while ( C );

EXAMPLE:

  i = 0;
  do
  {
       table[i]=table[i]/2;
       i=i+1;
  }
   while (i <= LEN);

         LDX         #table
         CLRA                    ; i=0
L1:   ASR          1,X+     ; table[i] /=2
         INCA                     ; i=i+1
         CMPA       #LEN   ; while(i<=10)
         BLE       L1             ; unsigned
                                        ; numbers
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WHILE Flow Structure

            while ( C )
             {
                    A;
              }
                          

EXAMPLE:

            i = 0;
            while( i <= LEN)
            {
                 table[i]=table[i]*2;
                 i=i+1;
            }

         LDX         #table
         CLRA
L1:   CMPA       #LEN
         BLT          L2
         BRA          L3
L2:   ASL           1,X+
         INCA
         BRA         L1
L3:    next instruction
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Use Good Structure When Writing Programs

— Do Not Use Spaghetti Code
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Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values. 
Each value is between 0 and 255. Create a new table whose 
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:
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4. Strategy: Because we are using a table of data, we will need 
pointers to each table so we can keep track of which table element 
we are working on.

Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.
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6. Need a way to determine when we reach the end of the table.

One way: Use a counter (say, register A) to keep track of 
how many Elements we have processed.

x+1

y+1
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7. Add code to implement blocks:
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8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog:  equ  $2000
data:  equ  $1000
count:  equ  5

org  prog  ; Set program counter to 0x2000
ldaa #count  ; Use A as counter
ldx #table1  ; Use X as data pointer to table1
ldy #table2  ; Use Y as data pointer to table2

l1: ldab  0,x  ; Get entry from table1
lsrb  ; Divide by two (unsigned)
stab  0,y  ; Save in table2
inx  ; Increment table1 pointer
iny  ; Increment table2 pointer
deca  ; Decrement counter
bne  l1  ; Counter != 0 => more entries

 ; to divide
swi  ; Done

org data
table1: dc.b   $07,$c2,$3a,$68,$f3
table2: ds.b    count
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9. Advanced: Optimize program to make use of instructions set 
efficiencies:

; Program to divide a table by two
; and store the results in memory

prog:  equ  $1000
data:  equ  $2000

count:  equ  5

org prog  ; Set program counter to 0x1000
ldaa  #count  ; Use A as counter
ldx  #table1  ; Use X as data pointer to table1
ldy  #table2  ; Use Y as data pointer to table2

l1: ldab  1,x+  ; Get entry from table1; then inc ptr.
lsrb  ; Divide by two (unsigned)
stab  1,y+  ; Save in table2; then inc ptr. 
dbne  a,l1  ; Decrement counter; if not 0,

;  more to do
swi  ; Done

org     data
table1: dc.b    $07,$c2,$3a,$68,$f3
table2: ds.b    count



EE 308    Spring 2014

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF THE PROGRAM 
STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY


