
EE 308 Spring 2014

• Decimal, Hexadecimal and Binary Numbers
• Writing an assembly language program

o Disassembly of MC9S12 op codes
o Use flow charts to lay out structure of program
o Use common flow structures

 if-then
 if-then-else
 do-while
 while

o Do not use spaghetti code
o Plan structure of data in memory
o Plan overall structure of program
o Work down to more detailed program structure
o Implement structure with instructions
o Optimize program to make use of instruction

efficiencies
o Do not sacrifice clarity for efficiency

Binary, Hex and Decimal Numbers (4-bit representation)

Binary Hex Decimal

0000
0001
0010

…
1010
1011
1100
1101
1110
1111

0
1
2
…
A
B
C
D
E
F

0
1
2
…
10
11
12
13
14
15

EE 308 Spring 2014

What does a number represent?

Binary numbers are a code, and represent what the programmer
intends for the code.

0x72 Some possible meanings:
’r’ (ASCII)
INC MEM (hh ll) (HC12 instruction)
2.26V (Input from A/D converter)
11410 (Unsigned number)
+11410 (Signed number)
Set temperature in room to 69 °F
Set cruise control speed to 120 mph

Binary to Unsigned Decimal:
Convert Binary to Unsigned Decimal
1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

Hex to Unsigned Decimal
Convert Hex to Unsigned Decimal
82D6 16

8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
33494 10

EE 308 Spring 2014

Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex

721/16
45/16
2/16

45
2
0

1
13
2

1
D
2

721 10 = 2D1 16

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit
0−7), then the number is positive.

Get decimal equivalent by converting number to decimal, and use
the + sign.

Example for 8−bit number:

3A 16 −> + (3 x 161 + 10 x 160) 10
 + (3 x 16 + 10 x 1) 10
 + 58 10

EE 308 Spring 2014

If the most significant bit is 1 (most significant hex digit 8−F),
then the number is negative.

Get decimal equivalent by taking 2’s complement of number,
converting to decimal, and using − sign.

Example for 8−bit number:

A316 −> - (5C+1) 16

 - (5 x 161 + 13 x 160) 10
 - (5 x 16 + 13 x 1) 10
 - 93 10

One’s complement table makes it simple to finding 2’s
complements

One’s complement

One’s complement

EE 308 Spring 2014

One’s complement table makes it simple to finding 2’s
complements

To take two’s complement, add one to one’s complement.

Take two’s complement of D0C3:

2F3C + 1 = 2F3D

EE 308 Spring 2014

Addition and Subtraction of Binary and Hexadecimal
Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero)
bits

How the C, V, N and Z bits of the CCR are changed?

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on
subtraction)

Note: Not all instructions change these bits of the CCR

EE 308 Spring 2014

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or
 N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

 7A 2A AC AC
+52 +52 +8A +72
----- ----- ------ ------
 CC 7C 36 1E

C: 0 C: 0 C: 1 C: 1

V: 1 V: 0 V: 1 V: 0

N: 1 N: 0 N: 0 N: 0

Z: 0 Z: 0 Z: 0 Z: 0

EE 308 Spring 2014

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is
greater than the minuend

V bit set when N - P = P or
 P - N = N

N bit set when MSB is 1

Z bit set when result is 0

 7A 8A 5C 2C
 -5C -5C -8A -72
 ----- ----- ------ ------
 1E 2E D2 BA

C: 0 C: 0 C: 1 C: 1

V: 0 V: 1 V: 1 V: 0

N: 0 N: 0 N: 1 N: 1

Z: 0 Z: 0 Z: 0 Z: 0

EE 308 Spring 2014

Writing Assembly Language Programs

Use Flowcharts to Help Plan Program Structure

Flow chart symbols:

EE 308 Spring 2014

IF-THEN Flow Structure

 if (C)
 {
 A;
 }

EXAMPLE:

 if (A<10)
 {
 var = 5;
 }

 CMPA #10 ; if (A<10)
 BLT L1 ; signed numbers
 BRA L2
L1: LDAB #5 ; var=5
 STAB var
L2: next instruction

OR:

 CMPA #10 ; if(A<10)
 BGE L2 ; signed numbers
 LDAB #5 ; var=5
 STAB var
L2: next instruction

EE 308 Spring 2014

IF-THEN-ELSE Flow Structure

 if (C)
 {
 A;
 }
 else
 {
 B;
 }

 if(A < 10)
 {
 var = 5;
 }
 else
 {
 var = 0;
 }

 CMPA #10 ; if(A<10)
 BLT L1 ; signed numbers
 CLR var ; var=0
 BRA L2
L1: LDAB #5 ; var=5
 STAB var
L2: next instruction

EE 308 Spring 2014

DO WHILE Flow Structure

 do
 {
 A;
 }
 while (C);

EXAMPLE:

 i = 0;
 do
 {
 table[i]=table[i]/2;
 i=i+1;
 }
 while (i <= LEN);

 LDX #table
 CLRA ; i=0
L1: ASR 1,X+ ; table[i] /=2
 INCA ; i=i+1
 CMPA #LEN ; while(i<=10)
 BLE L1 ; unsigned
 ; numbers

EE 308 Spring 2014

WHILE Flow Structure

 while (C)
 {
 A;
 }

EXAMPLE:

 i = 0;
 while(i <= LEN)
 {
 table[i]=table[i]*2;
 i=i+1;
 }

 LDX #table
 CLRA
L1: CMPA #LEN
 BLT L2
 BRA L3
L2: ASL 1,X+
 INCA
 BRA L1
L3: next instruction

EE 308 Spring 2014

Use Good Structure When Writing Programs

— Do Not Use Spaghetti Code

EE 308 Spring 2014

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values.
Each value is between 0 and 255. Create a new table whose
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:

EE 308 Spring 2014

4. Strategy: Because we are using a table of data, we will need
pointers to each table so we can keep track of which table element
we are working on.

Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.

EE 308 Spring 2014

6. Need a way to determine when we reach the end of the table.

One way: Use a counter (say, register A) to keep track of
how many Elements we have processed.

x+1

y+1

EE 308 Spring 2014

7. Add code to implement blocks:

EE 308 Spring 2014

8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog: equ $2000
data: equ $1000
count: equ 5

org prog ; Set program counter to 0x2000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 0,x ; Get entry from table1
lsrb ; Divide by two (unsigned)
stab 0,y ; Save in table2
inx ; Increment table1 pointer
iny ; Increment table2 pointer
deca ; Decrement counter
bne l1 ; Counter != 0 => more entries

 ; to divide
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

EE 308 Spring 2014

9. Advanced: Optimize program to make use of instructions set
efficiencies:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000

count: equ 5

org prog ; Set program counter to 0x1000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 1,x+ ; Get entry from table1; then inc ptr.
lsrb ; Divide by two (unsigned)
stab 1,y+ ; Save in table2; then inc ptr.
dbne a,l1 ; Decrement counter; if not 0,

; more to do
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

EE 308 Spring 2014

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF THE PROGRAM
STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY

