Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Writing Assembly Language Programs
- Use flow charts to lay out structure of program
Use common flow structures
- If-then
- If-then-else
- Do-while
- While
= Plan structure of data in memory
» Top-down design
- Plan overall structure of program
- Work down to more detailed program structure
- Implement structure with instructions
- Optimize program to make use of instruction
efficiencies
= Do not sacrifice clearly for efficiency or speed

Input and Output Ports
- How to get data into and out of the MC9S12

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values.
Each value is between 0 and 255. Create a new table whose
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:

$1000 tablel: ™

____________ >— COUNT

table2:

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

4-7. Add code to implement blocks:

a

Imt
Conmbar IDAA HOOONT
tablel | | - X Trut IDX #RELFL
_____________ | inters|| IDY #IRBLE2
------------- COUMT =
_____________ | Ertry B 0,X
tablad - Divide . .
N bz || SFB 7 unsigned aade
Store
_____________ Fosualt STAB Dr!
Inc INK
INY
OECA
BE Ll

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2014

8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog:
data:

count:

11:

tablel:
table2:

equ $2000
equ $1000

equ 5

org prog
ldaa #count

ldx #tablel
Idy #table2
Idab 0,x
Isrb

stab 0,y
inx

iny

deca

bne 11

swi

org data

; Set program counter to 0x2000
; Use A as counter

; Use X as data pointer to tablel
; Use Y as data pointer to table2
; Get entry from tablel

; Divide by two (unsigned)

; Save in table?2

; Increment tablel pointer

; Increment table2 pointer

; Decrement counter

; Counter '= 0 => more entries

; to divide

; Done

dc.b $07,$c2,$3a,$68,513

ds.b count

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

9. Advanced: Optimize program to make use of instructions set
efficiencies:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000

count: equ 5
org prog ; Set program counter to 0x1000
Idaa #count ; Use A as counter

Idx #tablel ; Use X as data pointer to tablel
Idy #table2 ; Use Y as data pointer to table2

11: Idab 1,x+ ; Get entry from tablel; then inc

; pointer

Isrb ; Divide by two (unsigned)

stab 1,y+ ; Save in table2; then inc potr.

dbne a,l1 ; Decrement counter; if not 0,
; more to do

swi ; Done

org data

tablel: dc.b $07,$c2,$3a,$68,$3
table2: ds.b count

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

TOP-DOWN PROGRAM DESIGN
« PLAN DATA STRUCTURES IN MEMORY

« START WITH A LARGE PICTURE OF THE PROGRAM
STRUCTURE

* WORK DOWN TO MORE DETAILED STRUCTURE
« TRANSLATE STRUCTURE INTO CODE
* OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2014

Input and Output Ports

* How do you get data into a computer from the outside?

SIMPLIFIED INPUT PORT

Dakwdas O BOoH®E WwHLEGEW0

ATAAAAAAL

Dy
Dg
D
H 5
C
1
2 Dy
D
&
D
a 3
L
1 D
o 2
2
5
D,
Do
Pead from |
Q0000

Any read from address $0000 gets
signals from outside

LDAA $00

Puts data from outside into
accumulator A.

Data from outside looks like a
memory location.

T <4] N

A Tri-State Buffer acts like a switch
If TRI is not active, the switch is

open: OUT will not be driven by IN
Some other device can drive OUT

Qur Vo ™

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2014

» How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT

D,
Dg
D
H 5
C
1
2 Dy
D
=
t D
3 3
L
i D
= 2
e
s
D
Dg
Write to
030001

TRaekudoc O O0H bBHDPIGHEDW

Any write to address $01 latches
data into FF, so data goes to
external pins

MOVB #$AA,$01

Puts $AA on the external pins

When a port is configured as
output and you read from that port,
the data you read is the data which
was written to that port:

MOVB #$AA, $01
LDAA $01

Accumulator A will have $AA after
this

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

* Most I/0 ports on MC9S12 can be configured as either input or
output

SIMPLIFIED INPUT/OUTPUT PORT

T

Read from Address 0x0000
DT D Q > PJL,
Write to Address 0x0000 DDRA 7

A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

If Bit 7 of DDRA is 0, the port is an input port. Data written
to flip-flop does not get to pin though tri-state buffer

If Bit 7 of DDRA is 1, the port is an output port. Data
written to flip-flop does get to pin though tri-state buffer

DDRA (Data Direction Register A) is located at 0x0002

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Figure 1-1 MC9512DT256 Block Diagram

VRH |——] VRH |=—vRH
| 2EEK Byts Flash EEPROM | ATDO ypL |- ATOH VAL le—vaL
VDDA |- VDDA |-=—VDDA
| 12K Byts RAM | VS5A |-—— VSSA |=—VESA
AND a— PAL0 AN | |-=—PaD0B
| 4K Byte EEFROM | AN1 =— PAC 1 AN1 [=— |=—PaD09
ANZ - PAL02 ANZ [=— |=—PaD10
VDDR— ANZ g [=—PaCoz ANZ [=— = |=—PADT
VESA—- AN4 = |=—paDos ANY (=] T |=—PaD12
VREGEN—= Voltage Regulatar ANG =— PADOE ANG |=—] -=— PAD13
WD 2 == ANG -=— PALOE ANG |- --— PAD4
V551 2 - ANT - PACOT ANT [w— |=—PaD15
BHED e Sin0k-wireE Backoraund PO [== PKD , XADDR14,
3 Debug Modul= CPUZ PPAGE PLE [=+ PK1! XADDR1S!
—— P2 [+=| 2 | .. [==PK2, XADDRIE,
VODPLL =] Clook and Pic? {==l & | |==PK3 | XADDRIT!
vesplL =] PLL Fesst Feriodis Intermipt Plxd (== O == PKd | NADDRIE,
Ganeration PINE PKS : XADDR1S
EXTAL—= Mokl DOP Walehing =] Pk ETE
NTAL =] Clock Monitor LT .
RESET =+ Breakpaints 10D [<= PTO
— 10 == FT1
e i 10G2 ==t | ==PT2
[
PES e | B Systam Enhanced Capture 1G53 (o= | == FT2
w |y —_— Intagration Timar 1o [Q[0 o= P74
PEZw=(W [|w=| TSTRB
o Module I0CE [[FTE
PE=wf- |5 [*=| BELK (SIM) 10CE | - ETE
PES e -] BODA 1oeT PTT
PEG = +=| MODB = e
PET =+ || MOACCTTIRS o RND =] - PE0
=
TEST—= THD [== P51
sci RXD [- P52
REEEREEEREREEREE; DO -l @ lempsz
i MISD [- L == P24
Multiplexsd Address/Data Bus Mos| N [l I b
PRRREEE PARTORRE | 0 st | [£
S5 |- for e PET i
DDRA DORE PV Yy =
BOLC RHE [=—] I
PTA FTE (J1850) TR —=| o || = PIAD E
=
RXCAN |=— - P
CAND rycay [E :: ::Putz :E
[- [- -
88 $ DEBEBEEE D_—wmean]e T [{F|glem 1
[s s e = e = o B THCAN [—=| S -H-gn_-o-n-pmq. g
ErpoTrhof FRCRAGDER o | == PME =
Qoo ooo0 Qoo oooO0 = o
Qogo0G00 ooododoo T - == PME m
L of L e L L AT oL L ST oL L L e 5 - e DT =
e " b=
—_— L R \ o &
Multlplaxad""""""""? I-\-ELD'I‘GE-—O = =
1 =L o = = =L =L o sE o | =
WidsBus Ei Gk G hbkk GEkGhEkE k. =
| [s R s s) [s o O _E
e) =] == PJO o
IMuhiplmadEEEEggﬁg ' """E 2 [==Pn z
'‘MamowBus T S S Z 5 K55 | . e R o &=
R Ry - SCL KT || == PJT
Intamal Logic 2.5W I'Cr Coriwar BV T ET PRO
- - —— -
Eg}:g i P || HWP 1 | e PP
1 1 PWME (=T KWP2 [==| - P2
- - P P KIWP3 feel € |0 [== PP2
PLL 2.5V AD Converter 5V & PWMA |l —a=| KWP4 |==(D |0 == PP
= Voltage Regulator Refarance S s aps e -+ PS5
VDDFLL VDDA —= PG || KA] == PP
WESPLL — VESA — PAWMT || KWPT [== PR7
= = MISD | KWHD [== == PHI)
MACS] [FKWHT [y == PH1
Voltage Regulator BV & 10
'?DDF! g_. SPi SOK || KWH2 |- - ==PH2
vEER S5 || KWHS == == PH3
L WIS || KWH4 [+l D |0 [+oPHA
gpp MOS! [KWHE |~ s PHS
SCK (S| WHE |- == PHE
T || KWHT [. PHT

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Ports on the HC12
* How do you get data out of computer to the outside?

* A Port on the MC9S12 is a device that the MC9S12 uses to
control some hardware.

* Many of the MC9S12 ports are used to communicate with
hardware outside of the MC9S12.

» The MC9S12 ports are accessed by the MC9S12 by reading and
writing memory locations $0000 to $03FF.

» Some of the ports we will use in this course are PORTA,
PORTB, PTJ and PTP:

* PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

* PORTRB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

» PTJ is accessed by reading and writing address $0268.
- DDRJ is accessed by reading and writing address $026A.

* PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

* On the DRAGON12-Plus EVB, eight LEDs and four seven-
segment LEDs are connected to PTB.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

16x2 character LCD Potentiometer connected to ATD

.....

o S S Card

..........
...........

s i EEH R Connector for
: ® Xbee transmit.

......
............
......
.....

......

8 DIP switches @ weets || cones Relay
4 push buttons |[EM 1 HET ¥ Bream—-
""" Keypad
Motor driver Switch mode to boot off

RAM or EEPROM

-Before you can use the eight individual LEDs or the seven-
segment LEDs, you need to enable them:

- Bit 1 of PTJ must be low to enable the eight individual
LEDs.

* To make Bit 1 of PTJ low, you must first make Bit 1
of PTJ an output by writing a 1 to Bit 1 of DDRJ.

* Next, write a 0 to Bit 1 of PTJ.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

- Bits 3-0 of PTP are used to enable the four seven-segment
LEDs.

- To use the seven-segment [.EDs, first write 1’s to Bits 3-0
of DDRP to make Bits 3-0 of PTP outputs.

* A low PTPQ enables the left-most (Digit 3) seven-
segment LED

* A low PTP1 enables the second from the left (Digit 2)
seven-segment LED

* A low PTP2 enables the third from the left (Digit 1)
seven-segment LED

* A low PTP3 enables the right-most (Digit 0) seven-
segment LED

— To use the eight individual LEDs and turn off the seven-
segment LEDs, write ones to Bits 3-0 of PTP, and write a 0
to Bit 1 of PTJ:

BSET DDRP,#$0F ; Make PTP3 through PTPO outputs

BSET PTP,#$0F ; Turn off seven-segment LEDs
BSET DDRJ,#$02 ; Make PTJ1 output
BSET PTJ,#$02 ; Turn on individual LEDs

* On the DRAGON12-Plus EVB, the LCD display is connected to
PTK

Electrical Engineering EE 308 Spring 2014
prin

New Mexico Institute of Mining and Technology

* When you power up or reset the MC9S12, PORTA, PORTB, PTJ
and PTP are input ports(!).

* You can make any or all bits of PORTA, PORTB PTP and PTJ
outputs by writing a 1 to the corresponding bits of their Data
Direction Registers (DDRs).

— You can use DBug-12 to manipulate the IO ports on the
68HCS12

* To make PTB an output, use MM to change the
contents of address $0003 (DDRB) to an $FF.

* You can now use MM to change contents of address
$0001 (PORTB), which changes the logic levels on the

PORTRB pins.

* If the data direction register makes the port an input,
you can use MD to display the values on the external

pins.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the
corresponding bit of DDRA (address 0x0002).

To make a bit of Port A an input port, write a 0 to the
corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port(!).

DDRA [DDR |(DDR |DDR |DDR |DDR |DDRA |DDRA
7 A6 A5 A4 A3 A2 1 0
Reset 0 0 0 0 0 0 0 0 50002

For example, to make bits 3—-0 of Port A inputs, and bits 7 — 4
outputs, write a OxF0 to DDRA.

To send data to the output pins, write to PORTA (address 0x0000).
When you read from PORTA input pins will return the value of the

signals on them (0 0 0V, 1 0 5V); output pins will return the
value written to them.

PA7 PAG6 PA5 PA4 PA3 PA2 PA1 PAO
Reset - - - - - - - - $0000

Port B works the same, except DDRB is at address 0x0003 and
PORTRB is at address 0x0001.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

;A simple program to make PORTA output and PORTB
; input, then read the signals on PORTB and write these
; values out to PORTA

prog: equ $2000

PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03

org prog
movb #$tf, DDRA ; Make PORTA output

movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

Because DDRA and DDRB are in consecutive address
locations you could make PORTA an output and PORTB and
input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

Electrical Engineering EE 308 Spring 2014
prin

New Mexico Institute of Mining and Technology

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

* Use comments

* Do not use tricks
2. Make programs easy to modify

» Top-down design

» Structured programming — no spaghetti code

» Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do
SO

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

TIPS FOR WRITING PROGRAMS
1. Think about how data will be stored in memory.
* Draw a picture
2. Think about how to process data
* Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to
individual instructions

» Top-down design

4. Use names instead of numbers

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Another Example of an Assembly Language Program
* Find the average of the numbers in an array of data.
* The numbers are 8-bit unsigned numbers.

* The address of the first number is $£000 and the address of the
final number is $EO01F. There are 32 numbers.

» Save the result in a variable called answer at address $1000.
Start by drawing a picture of the data structure in memory:

FIND THE AVERAGE OF NUMBERS IN ARRAY FROM
0XE000 TO 0XEO1F

Treat numbers as 8—bit unsigned numbers

0xEO000

DO |—|Ul|N

—_
—_

OxEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Start with the big picture

Find average of 8-bit numbers in array from 0xE000 to 0xEO1F

0xE000

|0~ |UT| &~

OxEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14
Add details to blocks

4 0xE000

5

1

8

6

11

OxEO1F

Decide on how to use CPU registers for processing data
Find average of 8-bit numbers in array from 0xE000 to OxEQ1f
Sum: 16-bit register. Can use D or Y

No way to add 8—bit number to D
Can use ABY to add 8-bit numberto Y: (B)+(Y) L Y

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Add more details: Expand another block

Process
START Init Entries

X [4 0xE000
/
Ej 5
Init 1
8
Y
Process I 6
Eries]_]_
O0xEO1F

More details: How to tell when program reaches end of array

How to check if more to do?
If X < 0xE020, more to do.

BLT or BLO; Addresses are unsigned, so BLO
How to find average? Divide by LEN
To divide, use IDIV

TFRY,D ; transfer Y to D

LDX #LEN ; load divisor in X
IDIV ; (D)/(X)=>X

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Write program
;Program to average 32 numbers in a memory array

prog: equ $2000
data: equ $1000

array: equ $SE000
len: equ 32

org prog
Idx #array ; initialize pointer
Idy #0 ; initialize sum to 0
loop: ldab 0,x ; get number
aby ; add to sum
inx ; point to next entry
cpx #(array+len) ; more to process?
blo loop ; if so, process
tfr y,d ; to divide, need dividend in D
Idx #len ; to divide, need divisor in X
idiv ; D/X quotient in x, remainder in D
stx answer ; done — save answer
swi
org data
answer: ds.w 1 ; reserve 16-bit word for answer

* Important: Comment program so it is easy to understand.

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2014

The assembler output for the above program

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code
1 1

2 2

3 3 0000 2000

4 4 0000 1000

5 5

6 6 0000 E000

7 7 0000 0020

8 8

9 9

10 10

11 11 a002000 CEEO 00
12 12 a002003 CD00 00
13 13 a002006 E600

14 14 a002008 19ED

15 15 a00200A 08

16 16 a00200B 8EEO0 20
17 17 a00200E 25F6

18 18

19 19 a002010 B764

20 20 a002012 CE00 20
21 21 a002015 1810
remainder

22 22 a002017 7E10 00
23 23 a00201A 3F

24 24

25 25

26 26 a001000

27

28 28

Source line

;Program to average 32 numbers in a memory array

prog:
data:

array:

len;

loop:

$2000
$1000

equ
equ

equ $E000
equ 32

org prog

ldx #array
ldy #0
Idab 0,x

; initialize pointer

; initialize sum to 0

; get number

aby ; odd - add to sum

inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

tfr y,d ; To divide, need dividend
1dx #len ; To divide, need divisor
idiv ; D/X quotient in X,

stx answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for 27

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 14

Here is the .s19 file:

S11E2000CEE000CDO0000E60019EDO8SEE02025F6B764CE002018107E10003FAB
S9030000FC

