
 EE 308/MENG 483 Spring 2017

Exam II Review April 2017

Introduction to the MC9S12 Timer Subsystem

The MC9S12 has a 16-bit counter that runs with a 24 MHz.

The clock starts at 0x0000, counts up until it gets to 0xFFFF.

It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the counter to
count from 0x0000 to 0xFFFF and roll over to 0x0000.

Registers used to enable Timer Overflow

 EE 308/MENG 483 Spring 2017

Code needed to use the timer overflow:

...
asm(sei); /* Disable interrupts */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set */

 /* prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */
UserTimerOvf = (unsigned short)&toi_isr;

asm(cli); /* Enable interrupts (clear I bit) */
while (1)
{

/* Put code here to do things */
}
...

void interrupt toi_isr(void)
{

...
TFLG2 = 0x80; /* Clear timer interrupt flag */

}

 EE 308/MENG 483 Spring 2017

By setting prescaler bits PR2,PR1,PR0 of TSCR2 you can slow down the
clock:

PR Divide Freq Overflow Rate
000 1 24 MHz 2.7307 ms
001 2 12 MHz 5.4613 ms
010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms
110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

Interrupt vectors for the HCS12

The interrupt vectors for the MC9S12DP256 are located in
memory from 0xFF80 to 0xFFFF.

These vectors are programmed into Flash EEPROM and are very
difficult to change

DBug12 redirects the interrupts to a region of RAM where they are
easy to change

For example, when the MC9S12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the MC9S12 to look at
address 0x3E5E and 0x3E5F.

 EE 308/MENG 483 Spring 2017

For C programs, the vectors are defined in the file vectors12.h.
Here is the define statement for the TOF:

#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

The Real Time Interrupt

Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to
interrupt the processor at a regular interval.

Registers you need to work with RTIs are:

 EE 308/MENG 483 Spring 2017

The following table shows all possible values, in ms, selectable by
the RTICTL register (assuming a 8 MHz oscillator):

Code needed to use the real time interrupt

...
asm(sei); /* Disable interrupts
RTICTL = 0x63; /* Set rate to 16.384 ms */
CRGINT = 0x80; /* Enable RTI interrupts */
CRGFLG = 0x80; /* Clear RTI Flag */
UserRTI = (unsigned short) &rti_isr;
asm(cli); /* Enable interrupts */

while (1)
{

_ _asm(wai); /* Do nothing -- wait for interrupt */
}

 EE 308/MENG 483 Spring 2017

interrupt void rti_isr(void)
{

...
CRGFLG = 0x80;

}

The MC9S12 Input Capture Function

 EE 308/MENG 483 Spring 2017

Registers used to enable Input Capture Function

Write a 1 to Bit 7 of TSCR1 to turn on timer

Set the prescaler in TSCR2

Write a 0 to the bits of TIOS to make those pins input capture

 EE 308/MENG 483 Spring 2017

Write to TCTL3 and TCTL4 to choose edge(s) to capture

To clear the flag, write a 1 to the bit you want to clear

To enable interrupt when specified edge occurs, set corresponding
bit in TIE register

To determine time of specified edge, read 16−bit result registers
TC0 thru TC7

 EE 308/MENG 483 Spring 2017

Consider to wait until an event occurs on Pin 2 of PTT:

...
asm(sei);
done = FALSE;

/* Turn on timer subsystem */
TSCR1 = 0x80;

/* Set prescaler to 32 (87.38 ms), no TOF interrupt */
TSCR2 = 0x05;

/* Setup for IC1 */
TIOS = TIOS & ~0x02; /* Configure PT1 as IC */
TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear IC1 Flag */
UserTimerCh1 = (short) &tic1_isr;
TIE = TIE | 0x02; /* Enable IC1 Interrupt */

/* Setup for IC2 */
TIOS = TIOS & ~0x04; /* Configure PT2 as IC */
TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */
TFLG1 = 0x04; /* Clear IC2 Flag */
UserTimerCh2 = (short) &tic2_isr;
TIE = TIE | 0x04; /* Enable IC2 Interrupt */

/* Enable interrupts by clearing I bit of CCR */
asm(cli);
while (!done)
{

asm(wai); /* Low power mode while waiting */
}
time = second - first; /* Calculate total time */
...

 EE 308/MENG 483 Spring 2017

interrupt void tic1_isr(void)
{

first = TC1;
TFLG1 = 0x02;

}

interrupt void tic2_isr(void)
{

second = TC2;
done = TRUE;
TFLG1 = 0x04;

}

The MC9S12 Output Compare Function

 EE 308/MENG 483 Spring 2017

Write a 1 to Bit 7 of TSCR1 to turn on timer

Set the prescaler in TSCR2

Write a 1 to the bits of TIOS to make those pins output compare

Write to TCTL1 and TCTL2 to choose action to take

 EE 308/MENG 483 Spring 2017

Write time you want event to occur to TCn register. To have next event
occur T cycles after last event, add T to TCn.

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To enable interrupt when compare occurs, set corresponding bit in TIE
register

Program to implement a 100 Hz square wave on output pin PT2: Make
output toggle ever 5 ms, for a 10 ms period: 5 ms * 24 × 106 cycles/s = 120,
000 cycles. TCNT can only count up to 65,536 cycles. Need to use prescaler
to get correct frequency. A prescaler of 4 divides the clock by 16, so: 5 ms *
(24 × 106 cycles/s / 16) = 7, 500 cycles.

...
#define PERIOD 15000
#define HALF_PERIOD (PERIOD/2)
...

asm(sei); /* disable interrupts */
TSCR1 = 0x80; /* Turn on timer subsystem */
TSCR2 = 0x04; /* Set prescaler to 0.666 us */
TIOS = TIOS | 0x04; /* PT2 as Output Compare */
TCTL2 = (TCTL2 | 0x10) & ~0x20; /* to toggle on compare */
TFLG1 = 0x04; /* Clear Channel 2 flag */

 EE 308/MENG 483 Spring 2017

UserTimerCh2 = (unsigned short) &toc2_isr;
TIE = TIE | 0x04; /* Enable interrupt on Channel 2*/
asm(cli); /* global enable */

while (1)
{

_ _asm(wai);
}
...

interrupt void toc2_isr(void)
{

TC2 = TC2 + HALF_PERIOD;
TFLG1 = 0x04;

}

Pulse Width Modulation on the MC9S12

Because PWM is used so often the MC9S12 has a built-in PWM system.

The MC9S12 PWM does not use interrupts.

The PWM system on the MC9S12 is very flexible.

To enable the PWM output on one of the pins of Port P, write a 1 to the
appropriate bit of PWME

PWMPOLn − Choose polarity 1 => high polarity 0 => low polarity
We will use high polarity only. PWMPOL = 0xFF;

PWMCLKn − Choose clock source for Channel n

 EE 308/MENG 483 Spring 2017

CH5, CH4, CH1, CH0 can use either A (0) or SA (1)
CH7, CH6, CH3, CH2 can use either B (0) or SB (1)

This register selects the prescale clock source for clocks A and B
independently

Select center aligned outputs (1) or left aligned outputs (0)

Choose PWMCTL = 0x00 to choose 8−bit mode

PWMSCLA adjusts frequency of Clock SA

PWMSCLB adjusts frequency of Clock SB

How to set the Period for PWM Channel 0

To get a 0.5 ms PWM period, you need 12,000 cycles of the 24
MHz clock.

 EE 308/MENG 483 Spring 2017

PWMPER0 × 2PCKA if PCLK0 == 0
12, 000=

PWMPER0 × 2PCKA+1 × PWMSCLA if PCLK0 == 1

Code to set up PWM Channel 0 for 0.5 ms period:
2 kHz frequency, PWM with 60% duty cycle

PWMCTL = 0x00; /* 8-bit Mode */
PWMPOL = 0xFF; /* High polarity mode */
PWMCAE = 0x00; /* Left-Aligned */

PWMPRCLK = PWMPRCLK & ~0x07; /* PCKA = 0 */
PWMCLK = PWMCLK | 0x01; /* PCLK0 = 1 */
PWMSCLA = 30;
PWMPER0 = 200;
PWME = PWME | 0x01; /* Enable PWM Channel 0 */
PWMDTY0 = 120; /* 60% duty cycle on Channel 0 */

MC9S12 Analog/Digital Converter

A 10-bit A/D converter is used to convert an input voltage. The reference
voltages are VRL = 0V and VRH = 5V.

– What is the quantization level of the A/D converter?

 ΔV = (VRH − VRL)/(2b -1) = 4.88 mV

If the value read from the A/D converter is 0x15A, what is the input voltage?

Vin = VRL + [(VRH − VRL)/(2b-1)]*ADvalue = 0 V + 4.88 mV × 346 =
1.6894 V

 EE 308/MENG 483 Spring 2017

To program the HCS12 A/D converter you need to set up the A/D control
registers ATD0CTL2, ATD0CTL3, ATD0CTL4 and ATD0CTL5.

The registers needed to use the A/D are:

To Power up A/D Converter (ADPU = 1 in ATD0CTL2)

To Select number of conversions per sequence (S8C S4C S2C S1C in
ATD0CTL3)

S8C S4C S2C S1C = 0001 to 0111 for 1 to 7 conversions
S8C S4C S2C S1C = 0000 or 1xxx for 8 conversions

To select 8-bit mode write 0x85 to ATD0CTL4
To select 10-bit mode write 0x05 to ATD0CTL4
*Other values of ATD0CTL4 either will not work or will result in slower
A/D conversion rates

To select:
DJM = 0 => Left justified data in the result registers
DJM = 1 => Right justified data in the result registers

DSGN = 0 => Unsigned data representation in the result register
DSGN = 1 => Signed data representation in the result register

SCAN = 0: Convert one sequence, then stop
SCAN = 1: Convert continuously

MULT = 0: Convert one channel the specified number of times
 - Choose channel to convert with CC, CB, CA.

MULT = 1: Convert across several channels.
- First channel to be converted is CC, CB, CA

 EE 308/MENG 483 Spring 2017

After writing to ATD0CTL5, the A/D converter starts, and the SCF bit is
cleared. After a sequence of conversions is completed, the SCF flag is set.

You can read the results in ATD0DRx.

To setup the A/D to do 8 conversions, in 8-bit mode, on Channel 4:

...
ATD0CTL2 = 0x80; /* Power up A/D, no interrupts */
ATD0CTL3 = 0x00; /* Do eight conversions */
ATD0CTL4 = 0x85; /* 8-bit mode */
ATD0CTL5 = 0xA4; /* 1 0 1 0 0 1 0 0

 | | | | ___/
 | | | | |
 | | | | __ Bit 4 of Port AD
 | | | ____ MULT = 0 => one channel only
 | | ___ Scan = 1 => continuous conversion
 | _____DSGN = 0 => unsigned
 ______ DJM = 1 => right justified
 */

