
 EE 308/MENG 483 Spring 2017

 Asynchronous Serial Communications
 The MC9S12 Serial Communications Interface (SCI)

Asynchronous Data Transfer

• In asynchronous data transfer, there is no clock line between the
two devices

• Both devices use internal clocks with the same frequency

• Both devices agree on how many data bits are in one data transfer
(usually 8, sometimes 9)

• A device sends data over an TxD line, and receives data over an
RxD line

– The transmitting device transmits a special bit (the start bit)
to indicate the start of a transfer
– The transmitting device sends the requisite number of data
bits
– The transmitting device ends the data transfer with a special
bit (the stop bit)

• The start bit and the stop bit are used to synchronize the data
transfer

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

Asynchronous Data Transfer

• The receiver knows when new data is coming by looking for the
start bit (digital 0 on the RxD line).

• After receiving the start bit, the receiver looks for 8 data bits,
followed by a stop bit (digital high on the RxD line).

• If the receiver does not see a stop bit at the correct time, it sets
the Framing Error bit in the status register.

• Transmitter and receiver use the same internal clock rate, called
the Baud Rate.

• At 9600 baud (the speed used by D-Bug12), it takes 1/9600
seconds for one bit, for a total of 10/9600 seconds, or 1.04 ms, for
one byte.

Parity in Asynchronous Serial Transfers

• The HCS12 can use a parity bit for error detection.

– There are two types of parity – even parity and odd parity
* With even parity, and even number of ones in the data
clears the parity bit; an odd number of ones sets the
parity bit. The data transmitted will always have an
even number of ones.

* With odd parity, and odd number of ones in the data
clears the parity bit; an even number of ones sets the
parity bit. The data transmitted will always have an odd
number of ones.

 EE 308/MENG 483 Spring 2017

Asynchronous Data Transfer

• The HCS12 has two asynchronous serial interfaces, called the
SCI0 and SCI1 (SCI stands for Serial Communications Interface)

• SCI0 is used by D-Bug12 to communicate with the host PC

• When using D-Bug12 you normally cannot independently operate
SCI0 (or you will lose your communications link with the host PC)

• The SCI0 TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of
Port S.

• The SCI0 RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of
Port S.

• In asynchronous data transfer, serial data is transmitted by
shifting out of a transmit shift register into a receive shift register.

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

Timing in Asynchronous Data Transfers

• The BAUD rate is the number of bits per second.

• Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and
115,000

• When not transmitting the TxD line is held high.

• When starting a transfer the transmitting device sends a start bit
by bringing TxD low for one bit period (104 μs at 9600 baud).

• The receiver knows the transmission is starting when it sees RxD
go low.

• The receiver checks the data three times for each bit. If the data
within a bit is different, there is an error. This is called a noise
error.

• The transmitter ends the transmission with a stop bit, which is a
high level on TxD for one bit period.

• If the receiver sees a start bit, but fails to see a stop bit, there is an
error. Most likely the two clocks are running at different
frequencies (generally because they are using different baud rates).
This is called a framing error.

• The transmitter clock and receiver clock will not have exactly the
same frequency. The transmission will work as long as the
frequencies differ by less 4.5% (4% for 9-bit data).

EE 308 Spring 2011

 EE 308/MENG 483 Spring 2017

Baud Rate Generation

• The SCI transmitter and receiver operate independently, although
they use the same baud rate generator.

• A 13-bit modulus counter generates the baud rate for both the
receiver and the transmitter.

• The baud rate clock is divided by 16 for use by the transmitter.

• The baud rate is

SCIBaudRate = Bus Clock/(16 × SCI1BR[12:0])

• With a 24 MHz bus clock, the following values give typically
used baud rates.

Bits Receiver Transmitter Target Error
SBR[12:0] Clk (Hz) Clk(Hz) Baudrate (%)

39 615385 38462 38400 0.16
78 307692 19231 19200 0.16
156 153846 9615 9600 0.16
312 76923 4808 4800 0.16

 EE 308/MENG 483 Spring 2017

SCI Registers

• Each SCI uses 8 registers of the HCS12. In the following we will
refer to SCI1.

 EE 308/MENG 483 Spring 2017

1. SCI Baud Rate Registers (SCI BDH/L)

SBR12 – SBR0: SCI Baud Rate Bits
The baud rate for the SCI is determined by these 13 bits.

2. SCI Control Register 1 (SCICR1)

M: Data Format Mode Bit
1 = One start bit, nine data bits, one stop bit
0 = One start bit, eight data bits, one stop bit

WAKE: Wakeup Condition Bit
A logic 1 (address mark) in the most significant bit position of a
received data character, or a logic 0, an idle condition on the RXD

PE: Parity Enable Bit
1 = Parity function enabled
0 = Parity function disabled

PT: Parity Type Bit
1 = Odd parity
0 = Even parit

3. SCI Control Register 2 (SCICR2)

TIE: Transmitter Interrupt Enable Bit
1 = Transmit data register enable (TDRE) interrupt requests
enabled
0 = TDRE interrupt requests disabled

RIE: Receiver Full Interrupt Enable Bit
1 = Receiver data register full (RDRF) enabled
0 = RDRF disabled

 EE 308/MENG 483 Spring 2017

TE: Transmitter Enable Bit
1 = Transmitter enabled
0 = Transmitter disabled

RE: Receiver Enable Bit
1 = Receiver enabled
0 = Receiver disabled

RWU: Receiver Wakeup Bit Standby state
1 = RWU enables the wakeup function and inhibits further receiver
interrupt requests. Normally, hardware wakes the receiver by
automatically clearing RWU.
0 = Normal operation

4. SCI Status Register 1 (SCISR1)

TDRE: Transmit Data Register Empty Flag
1 = Byte transferred to transmit shift register; transmit data register
empty
0 = No byte transferred to transmit shift register

RDRF: Receive Data Register Full Flag
1 = Received data available in SCI data register
0 = Data not available in SCI data register

OR: Overrun flag
1 = Overrun
0 = No overrun

NF: Noise Flag
1 = Noise
0 = No noise

 EE 308/MENG 483 Spring 2017

FE: Framing Error Flag
1 = Framing error
0 = No framing error

PF: Parity Error Flag
1 = Parity error
0 = No parity error

5. SCI Status Register 2 (SCISR2)

BRK13: Break Transmit character length
1 = Break character is 13 or 14 bit long
0 = Break Character is 10 or 11 bit long

TXDIR: Transmitter pin data direction in Single-Wire mode.
1 = TXD pin to be used as an output in Single-Wire mode
0 = TXD pin to be used as an input in Single-Wire mode

6. SCI Data Registers (SCIDRH/L)

R8: R8 is the ninth data bit received when the SCI is configured
for 9-bit data format (M = 1).

T8: T8 is the ninth data bit transmitted when the SCI is configured
for 9-bit data format (M = 1).

R7-R0: Received bits seven through zero for 9-bit or 8-bit data
formats

T7-T0: Transmit bits seven through zero for 9-bit or 8-bit formats

 EE 308/MENG 483 Spring 2017

Example program using the SCI Transmitter

#include "derivative.h"
/* Program to transmit data over SCI port */

main()
{

/**
* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */
SCI1BDH = 0;
SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |
| | | | | | | ____ Even Parity
| | | | | | ______ Parity Disabled
| | | | | ________ Short IDLE line mode (not used)
| | | | __________ Wakeup by IDLE line rec (not used)
| | | ____________ 8 data bits
| | ______________ Not used (loopback disabled)
| ________________ SCI1 enabled in wait mode
__________________ Normal (not loopback) mode
*/

SCI1CR2 = 0x08; /* 0 0 0 0 1 0 0 0
 | | | | | | | |
 | | | | | | | ____ No Break
 | | | | | | ______ Not in wakeup mode (always awake)
 | | | | | ________ Receiver disabled
 | | | | __________ Transmitter enabled
 | | | ____________ No IDLE Interrupt
 | | ______________ No Receiver Interrupt
 | ________________ No Transmit Complete Interrupt
 __________________ No Transmit Ready Interrupt
*/

/**
* End of SCI Setup
***/

 EE 308/MENG 483 Spring 2017

SCI1DRL = ’h’; /* Send first byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’e’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’l’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’o’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

}

 EE 308/MENG 483 Spring 2017

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "derivative.h"
#include "vectors12.h"

#define enable() __asm(cli)

interrupt void sci1_isr(void);
volatile unsigned char data[80];
volatile int i;

main()
{

/**
* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */
SCI1BDH = 0;
SCI1CR1 = 0x00; /* 0 0 0 0 0 0 0 0

| | | | | | | |
| | | | | | | ____ Even Parity
| | | | | | ______ Parity Disabled
| | | | | ________ Short IDLE line mode (not used)
| | | | __________ Wakeup by IDLE line rec (not used)
| | | ____________ 8 data bits
| | ______________ Not used (loopback disabled)
| ________________ SCI1 enabled in wait mode
__________________ Normal (not loopback) mode
*/

SCI1CR2 = 0x04; /* 0 0 1 0 0 1 0 0
| | | | | | | |
| | | | | | | ____ No Break
| | | | | | ______ Not in wakeup mode (always awake)
| | | | | ________ Receiver enabled
| | | | __________ Transmitter disabled
| | | ____________ No IDLE Interrupt
| | ______________ Receiver Interrupts used
| ________________ No Transmit Complete Interrupt
__________________ No Transmit Ready Interrupt
*/

 EE 308/MENG 483 Spring 2017

UserSCI1 = (unsigned short) &sci1_isr;
i = 0;
enable();

/**
* End of SCI Setup
***/
while (1)
{

/* Wait for data to be received in ISR, then do something with it */
}

}

interrupt void sci1_isr(void)
{

char tmp;
/* Note: To clear receiver interrupt, need to read SCI1SR1, then read SCI1DRL.
* The following code does that
*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrupt */
data[i] = SCI1DRL;
i = i+1;
return;

}

