Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

« Asynchronous Serial Communications
« The MC9S12 Serial Communications Interface (SCI)

Asynchronous Data Transfer

* In asynchronous data transfer, there is no clock line between the
two devices

* Both devices use internal clocks with the same frequency

* Both devices agree on how many data bits are in one data transfer
(usually 8, sometimes 9)

* A device sends data over an TxD line, and receives data over an
RxD line
— The transmitting device transmits a special bit (the start bit)
to indicate the start of a transfer
— The transmitting device sends the requisite number of data
bits
— The transmitting device ends the data transfer with a special
bit (the stop bit)

* The start bit and the stop bit are used to synchronize the data
transfer

Electrical Engineerin
New Mexicollnstitute of Minggland Technlolog? EE 308/MENG 483 Spring 2 0 1 7

Asynchronous Seral Communlcatlions

=0 RxD
RxD =D
W
S L
1 5
2 B H
Idk: r il
t 0 1 1 o 1 0 1 1 B

Ones byl m quings: 10 bit timas

[D
11010110

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Asynchronous Data Transfer

* The receiver knows when new data is coming by looking for the
start bit (digital 0 on the RxD line).

« After receiving the start bit, the receiver looks for 8 data bits,
followed by a stop bit (digital high on the RxD line).

« If the receiver does not see a stop bit at the correct time, it sets
the Framing Error bit in the status register.

» Transmitter and receiver use the same internal clock rate, called
the Baud Rate.

» At 9600 baud (the speed used by D-Bug12), it takes 1/9600
seconds for one bit, for a total of 10/9600 seconds, or 1.04 ms, for
one byte.

Parity in Asynchronous Serial Transfers
» The HCS12 can use a parity bit for error detection.

— There are two types of parity — even parity and odd parity
* With even parity, and even number of ones in the data
clears the parity bit; an odd number of ones sets the
parity bit. The data transmitted will always have an
even number of ones.

* With odd parity, and odd number of ones in the data
clears the parity bit; an even number of ones sets the
parity bit. The data transmitted will always have an odd
number of ones.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Asynchronous Data Transfer

» The HCS12 has two asynchronous serial interfaces, called the
SCIO and SCI1 (SCI stands for Serial Communications Interface)

* SCIO is used by D-Bug12 to communicate with the host PC

* When using D-Bug12 you normally cannot independently operate
SCIO (or you will lose your communications link with the host PC)

» The SCIO TxD pin is bit 1 of Port S; the SCI1 TxD pin is bit 3 of
Port S.

» The SCIO RxD pin is bit 0 of Port S; the SCI1 RxD pin is bit 2 of
Port S.

* In asynchronous data transfer, serial data is transmitted by
shifting out of a transmit shift register into a receive shift register.

EE 308/MENG 483 Spring 2017

New Mexico Institute of Mining and Technology

Electrical Engineering

distribited into two 8-bit maoisters, SCIOORH and SCIODRL

An overnan errcor 1S gaerated if Bd shaft meaister £1lled befors SCIOOR paad

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Timing in Asynchronous Data Transfers

» The BAUD rate is the number of bits per second.

» Typical baud rates are 1200, 2400, 4800, 9600, 19,200, and
115,000

* When not transmitting the TxD line is held high.

» When starting a transfer the transmitting device sends a start bit
by bringing TxD low for one bit period (104 ps at 9600 baud).

* The receiver knows the transmission is starting when it sees RxD
go low.

* The receiver checks the data three times for each bit. If the data
within a bit is different, there is an error. This is called a noise
erITor.

* The transmitter ends the transmission with a stop bit, which is a
high level on TxD for one bit period.

» If the receiver sees a start bit, but fails to see a stop bit, there is an
error. Most likely the two clocks are running at different
frequencies (generally because they are using different baud rates).
This is called a framing error.

* The transmitter clock and receiver clock will not have exactly the
same frequency. The transmission will work as long as the
frequencies differ by less 4.5% (4% for 9-bit data).

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 11

Timing in Asynchronous Data Transfers

ASYHCHROMOUS SERIAL COMMUNIATIONS
Bauwd Clock = 16 x Baud Rae

Start Bit é LSF'
YN | F 11
EEEEEREEEBEEEEEEENEEEE EEERBLEEERBEEEEREEE

Start Bit — Theee 1's £00 lowed e s at BT, 3,5,7 Data Bit — Check a- FTH, 9, 10
(Teo of B3, 5,7 Iu=x B aBrl - (MEory eChdes waloe)
If noe 3ll =90, Nodge Flag @etk) (If mot 3ll same, noose flag Set)

If no stop it deteched, Framing Eroor Flag @&t

Eaarl clocks can iffier by 4.5% (4% f0r 9 O8ta Dhhts)
witll M0 Sreies.

B partity —— the fuiier of @es in deks woed i85 ewen
0 perzey —— the mnEr of aes in dets wixd i5 odd

WNEN uSing perity, tranEmt 7 deea + 1 pErity, or 8 d8ka ¢ 1 perity

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308/MENG 483 Spring 2017

Baud Rate Generation

» The SCI transmitter and receiver operate independently, although
they use the same baud rate generator.

* A 13-bit modulus counter generates the baud rate for both the
receiver and the transmitter.

* The baud rate clock is divided by 16 for use by the transmitter.

* The baud rate is

SCIBaudRate = Bus Clock/(16 x SCI1BR[12:0])

'TDmEiBE

BE
|

— 15 ——= Trangmither

 With a 24 MHz bus clock, the following values give typically
used baud rates.

Bits Receiver Transmitter Target Error
SBR[12:0] Clk (Hz) Clk(Hz) Baudrate (%)
39 615385 38462 38400 0.16
78 307692 19231 19200 0.16
156 153846 9615 9600 0.16
312 76923 4808 4800 0.16

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308/MENG 483 Spring 2017

SCI Registers

 Each SCI uses 8 registers of the HCS12. In the following we will
refer to SCI1.

0 0 0 | serd2 | sERl1l | SER10 SER8 SCTIEDH — Os0D0
SERT | SBR6 |SERS | SBRd | SBR3 | =2 SERD SCTIENL — (w0001
LOCPS | sc1swma| BERC M WAEFE ILT PT SCTICRL — (Oedl0C2
TIE | TCIE | RIE ILIE| TE FE SEK SCTICRZ - OwD(D3
TRE | TC RFF| IIIE| R i 3 FF SCTisRl - OwD0Dd

0 0 0 0 0 EFECL3 RIF SCTISR2 - (w05
R8 T8 0 0 0 0 0 SCTITRH — OxD(D5
R1/T7 | R&/T6 |E5/TS | R4/T4 | R3/T3 | RZ/T2 RO/TO SCTIrRL — (w0007

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

1. SCI Baud Rate Registers (SCI BDH/L)

SBR12 — SBRO0: SCI Baud Rate Bits
The baud rate for the SCI is determined by these 13 bits.

2. SCI Control Register 1 (SCICR1)

M: Data Format Mode Bit
1 = One start bit, nine data bits, one stop bit
0 = One start bit, eight data bits, one stop bit

WAKE: Wakeup Condition Bit
A logic 1 (address mark) in the most significant bit position of a
received data character, or a logic 0, an idle condition on the RXD

PE.: Parity Enable Bit
1 = Parity function enabled
0 = Parity function disabled

PT: Parity Type Bit
1 = Odd parity
0 = Even parit

3. SCI Control Register 2 (SCICR?2)

TIE: Transmitter Interrupt Enable Bit

1 = Transmit data register enable (TDRE) interrupt requests
enabled

0 = TDRE interrupt requests disabled

RIE: Receiver Full Interrupt Enable Bit
1 = Receiver data register full (RDRF) enabled
0 = RDRF disabled

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

TE: Transmitter Enable Bit
1 = Transmitter enabled
0 = Transmitter disabled

RE: Receiver Enable Bit
1 = Receiver enabled
0 = Receiver disabled

RWU: Receiver Wakeup Bit Standby state

1 = RWU enables the wakeup function and inhibits further receiver
interrupt requests. Normally, hardware wakes the receiver by
automatically clearing RWU.

0 = Normal operation

4. SCI Status Register 1 (SCISR1)

TDRE: Transmit Data Register Empty Flag

1 = Byte transferred to transmit shift register; transmit data register
empty

0 = No byte transferred to transmit shift register

RDRF: Receive Data Register Full Flag
1 = Received data available in SCI data register
0 = Data not available in SCI data register

OR: Overrun flag
1 = Overrun
0 = No overrun

NF: Noise Flag
1 = Noise
0 = No noise

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

FE: Framing Error Flag
1 = Framing error
0 = No framing error

PF: Parity Error Flag
1 = Parity error
0 = No parity error

5. SCI Status Register 2 (SCISR2)

BRK13: Break Transmit character length
1 = Break character is 13 or 14 bit long
0 = Break Character is 10 or 11 bit long

TXDIR: Transmitter pin data direction in Single-Wire mode.
1 =TXD pin to be used as an output in Single-Wire mode
0 = TXD pin to be used as an input in Single-Wire mode

6. SCI Data Registers (SCIDRH/L)

R8: R8 is the ninth data bit received when the SCI is configured
for 9-bit data format (M = 1).

T8: T8 is the ninth data bit transmitted when the SCI is configured
for 9-bit data format (M = 1).

R7-R0: Received bits seven through zero for 9-bit or 8-bit data
formats

T7-TO0: Transmit bits seven through zero for 9-bit or 8-bit formats

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG’ 483 Spring 20 1 7

Example program using the SCI Transmitter

#include "derivative.h"
/* Program to transmit data over SCI port */

main()

{

/**

* SCI Setup
***/
SCI1BDL = 156; /* Set BAUD rate to 9,600 */

SCI1BDH = 0;

|
____ Even Parity
Parity Disabled
Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits
Not used (loopback disabled)
SCI1 enabled in wait mode
Normal (not loopback) mode

SCI1CR2 = 0x08; /*0

___ No Break

Not in wakeup mode (always awake)
Receiver disabled

Transmitter enabled

No IDLE Interrupt

No Receiver Interrupt

No Transmit Complete Interrupt

No Transmit Ready Interrupt

/**

* End of SCI Setup

***/

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

SCI1DRL = ’h’; /* Send first byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’e’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’1’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL =’1’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

SCI1DRL = ’0’; /* Send next byte */
while ((SCI1SR1 & 0x80) == 0) ; /* Wait for TDRE flag */

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308/MENG 483 Spring 2017

Example program using the SCI Receiver

/* Program to receive data over SCI1 port */

#include "derivative.h"
#include "vectors12.h"

#define enable() __asm(cli)

interrupt void scil_isr(void);
volatile unsigned char data[80];
volatile int i;

main()

{

/**

* SCI Setup

***/

SCI1BDL = 156; /* Set BAUD rate to 9,600 */

|
____ Even Parity
Parity Disabled
Short IDLE line mode (not used)
Wakeup by IDLE line rec (not used)
8 data bits

Not used (loopback disabled)

SCI1 enabled in wait mode

Normal (not loopback) mode

______No Break
Not in wakeup mode (always awake)
Receiver enabled

Transmitter disabled

No IDLE Interrupt
Receiver Interrupts used

No Transmit Complete Interrupt

SCI1BDH = 0;

SCILCR1 = 0x00; /*0000
NEN
BEN
NEN
BEN
1]
BER
|1\
|\
\
*/

SCIICR2 = 0x04; /*0010
BEN
NEN
BEN
NEN
1]
BER
R
|\
\
)

No Transmit Ready Interrupt

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308/MENG 483 Spring 20 1 7

UserSCI1 = (unsigned short) &scil_isr;
i=0;
enable();

/**

* End of SCI Setup

***/
while (1)

}

/* Wait for data to be received in ISR, then do something with it */

}

interrupt void scil_isr(void)
{
char tmp;
/* Note: To clear receiver interrupt, need to read SCI1SR1, then read SCI1DRL.
* The following code does that
*/

if ((SCI1SR1 & 0x20) == 0) return; /* Not receiver interrupt */
data[i] = SCI1DRL;

i=i+1;

return;

