
 EE 308/MENG 483 Spring 2017

 Writing Assembly Language Programs
 Use flow charts to lay out structure of program
 Use common flow structures

 If-then
 If-then-else
 Do-while
 While

 Plan structure of data in memory
 Top-down design

 Plan overall structure of program
 Work down to more detailed program structure
 Implement structure with instructions

 Optimize program to make use of instruction
efficiencies

 Do not sacrifice clearly for efficiency or speed

 Input and Output Ports
 How to get data into and out of the MC9S12

 EE 308/MENG 483 Spring 2017

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values.
Each value is between 0 and 255. Create a new table whose
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:

 EE 308/MENG 483 Spring 2017

4-7. Add code to implement blocks:

 EE 308/MENG 483 Spring 2017

8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog: equ $2000
data: equ $1000

count: equ 5

org prog ; Set program counter to 0x2000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 0,x ; Get entry from table1
lsrb ; Divide by two (unsigned)
stab 0,y ; Save in table2
inx ; Increment table1 pointer
iny ; Increment table2 pointer
deca ; Decrement counter
bne l1 ; Counter != 0 => more entries

 ; to divide
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

 EE 308/MENG 483 Spring 2017

9. Advanced: Optimize program to make use of instructions set
efficiencies:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000

count: equ 5

org prog ; Set program counter to 0x1000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 1,x+ ; Get entry from table1; then inc
; pointer

lsrb ; Divide by two (unsigned)
stab 1,y+ ; Save in table2; then inc potr.
dbne a,l1 ; Decrement counter; if not 0,

; more to do
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

 EE 308/MENG 483 Spring 2017

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF THE PROGRAM
STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY

 EE 308/MENG 483 Spring 2017

Input and Output Ports

• How do you get data into a computer from the outside?

Any read from address $0000 gets
signals from outside

 LDAA $00

Puts data from outside into
accumulator A.

Data from outside looks like a
memory location.

A Tri-State Buffer acts like a switch

If TRI is not active, the switch is
open: OUT will not be driven by IN
Some other device can drive OUT

 EE 308/MENG 483 Spring 2017

• How do you get data out of computer to the outside?

Any write to address $01 latches
data into FF, so data goes to
external pins

 MOVB #$AA,$01

Puts $AA on the external pins

 When a port is configured as
output and you read from that port,
the data you read is the data which
was written to that port:

 MOVB #$AA, $01
 LDAA $01

Accumulator A will have $AA after
this

 EE 308/MENG 483 Spring 2017

• Most I/O ports on MC9S12 can be configured as either input or
output

 A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

 If Bit 7 of DDRA is 0, the port is an input port. Data written
to flip-flop does not get to pin though tri-state buffer

 If Bit 7 of DDRA is 1, the port is an output port. Data written
to flip-flop does get to pin though tri-state buffer

 DDRA (Data Direction Register A) is located at 0x0002

 EE 308/MENG 483 Spring 2017

 EE 308/MENG 483 Spring 2017

Ports on the HC12

• How do you get data out of computer to the outside?

• A Port on the MC9S12 is a device that the MC9S12 uses to
control some hardware.

• Many of the MC9S12 ports are used to communicate with
hardware outside of the MC9S12.

• The MC9S12 ports are accessed by the MC9S12 by reading and
writing memory locations $0000 to $03FF.

• Some of the ports we will use in this course are PORTA,
PORTB, PTJ and PTP:

• PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

• PORTB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

• PTJ is accessed by reading and writing address $0268.
- DDRJ is accessed by reading and writing address $026A.

• PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

• On the DRAGON12-Plus EVB, eight LEDs and four seven-
segment LEDs are connected to PTB.

 EE 308/MENG 483 Spring 2017

16x2 Character LCD Motor Driver Potentiometer connected
 to ATD

7-Segment 8 LEDs Serial Comm.
LEDs Port

8 DIP Switches Reset Button Debounced Keyboard

 4 Push buttons Connections to Ports

 EE 308/MENG 483 Spring 2017

-Before you can use the eight individual LEDs or the seven-
segment LEDs, you need to enable them:

- Bit 1 of PTJ must be low to enable the eight individual
LEDs.

* To make Bit 1 of PTJ low, you must first make Bit 1
of PTJ an output by writing a 1 to Bit 1 of DDRJ.

* Next, write a 0 to Bit 1 of PTJ.

- Bits 3-0 of PTP are used to enable the four seven-segment
LEDs.

- To use the seven-segment LEDs, first write 1’s to Bits 3-0
of DDRP to make Bits 3-0 of PTP outputs.

* A low PTP0 enables the left-most (Digit 3) seven-
segment LED

* A low PTP1 enables the second from the left (Digit 2)
seven-segment LED

* A low PTP2 enables the third from the left (Digit 1)
seven-segment LED

* A low PTP3 enables the right-most (Digit 0) seven-
segment LED

 EE 308/MENG 483 Spring 2017

– To use the eight individual LEDs and turn off the seven-
segment LEDs, write ones to Bits 3-0 of PTP, and write a 0 to
Bit 1 of PTJ:

BSET DDRP,#$0F ; Make PTP3 through PTP0 outputs
BSET PTP,#$0F ; Turn off seven-segment LEDs
BSET DDRJ,#$02 ; Make PTJ1 output
BCLR PTJ,#$02 ; Turn on individual LEDs

• On the DRAGON12-Plus EVB, the LCD display is connected to
PTK

• When you power up or reset the MC9S12, PORTA, PORTB, PTJ
and PTP are input ports(!).

• You can make any or all bits of PORTA, PORTB PTP and PTJ
outputs by writing a 1 to the corresponding bits of their Data
Direction Registers (DDRs).

– You can use DBug-12 to manipulate the IO ports on the
68HCS12

* To make PTB an output, use MM to change the
contents of address $0003 (DDRB) to an $FF.

* You can now use MM to change contents of address
$0001 (PORTB), which changes the logic levels on the
PORTB pins.

* If the data direction register makes the port an input,
you can use MD to display the values on the external
pins.

 EE 308/MENG 483 Spring 2017

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the
corresponding bit of DDRA (address 0x0002).

To make a bit of Port A an input port, write a 0 to the
corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port(!).

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

Reset 0 0 0 0 0 0 0 0 $0002

For example, to make bits 3−0 of Port A inputs, and bits 7 – 4
outputs, write a 0xF0 to DDRA.

To send data to the output pins, write to PORTA (address 0x0000).
When you read from PORTA input pins will return the value of the
signals on them (0  0V, 1  5V); output pins will return the
value written to them.

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Reset - - - - - - - - $0000

Port B works the same, except DDRB is at address 0x0003 and
PORTB is at address 0x0001.

 EE 308/MENG 483 Spring 2017

; A simple program to make PORTA output and PORTB
; input, then read the signals on PORTB and write these
; values out to PORTA

prog: equ $2000

PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03

org prog
movb #$ff,DDRA ; Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

 Because DDRA and DDRB are in consecutive address
locations you could make PORTA an output and PORTB and
input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

 EE 308/MENG 483 Spring 2017

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do
so

 EE 308/MENG 483 Spring 2017

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to
individual instructions

• Top-down design

4. Use names instead of numbers

